
PyPhi Documentation
Release v1.2.1

William GP Mayner

Sep 20, 2021

USAGE AND EXAMPLES

1 Installation 3

Python Module Index 135

Index 137

i

ii

PyPhi Documentation, Release v1.2.1

PyPhi is a Python library for computing integrated information.

If you use this software in your research, please cite the paper:

Mayner WGP, Marshall W, Albantakis L, Findlay G, Marchman R, Tononi G. (2018) PyPhi: A toolbox for
integrated information theory. PLOS Computational Biology 14(7): e1006343. https://doi.org/10.1371/
journal.pcbi.1006343

To report issues, use the issue tracker on the GitHub repository. Bug reports and pull requests are welcome.

For general discussion, you are welcome to join the pyphi-users group.

USAGE AND EXAMPLES 1

https://doi.org/10.1371/journal.pcbi.1006343
https://doi.org/10.1371/journal.pcbi.1006343
https://github.com/wmayner/pyphi
https://groups.google.com/forum/#!forum/pyphi-users

PyPhi Documentation, Release v1.2.1

2 USAGE AND EXAMPLES

CHAPTER

ONE

INSTALLATION

To install the latest stable release, run

pip install pyphi

To install the latest development version, which is a work in progress and may have bugs, run

pip install "git+https://github.com/wmayner/pyphi@develop#egg=pyphi"

Tip: For detailed instructions on how to install PyPhi on macOS, see the Detailed installation guide for macOS.

Note: Windows users: PyPhi is only supported on Linux and macOS operating systems. However, you can run it on
Windows by using the Anaconda Python distribution and installing PyPhi with conda: conda install -c wmayner
pyphi

1.1 Installation

To install the latest stable release, run

pip install pyphi

To install the latest development version, which is a work in progress and may have bugs, run

pip install "git+https://github.com/wmayner/pyphi@develop#egg=pyphi"

Tip: For detailed instructions on how to install PyPhi on macOS, see the Detailed installation guide for macOS.

Note: Windows users: PyPhi is only supported on Linux and macOS operating systems. However, you can run it on
Windows by using the Anaconda Python distribution and installing PyPhi with conda: conda install -c wmayner
pyphi

3

https://www.anaconda.com/what-is-anaconda/
https://anaconda.org/wmayner/pyphi
https://www.anaconda.com/what-is-anaconda/
https://anaconda.org/wmayner/pyphi

PyPhi Documentation, Release v1.2.1

1.2 Getting started

To explore the following examples, install IPython by running pip install ipython on the command line. Then
run it with the command ipython.

Lines of code beginning with >>> and ... can be pasted directly into IPython.

1.3 Basic Usage

Let’s make a simple 3-node network and compute its Φ.

To make a network, we need a TPM and (optionally) a connectivity matrix. The TPM can be in more than one form;
see the documentation for Network . Here we’ll use the 2-dimensional state-by-node form.

>>> import pyphi
>>> import numpy as np
>>> tpm = np.array([
... [0, 0, 0],
... [0, 0, 1],
... [1, 0, 1],
... [1, 0, 0],
... [1, 1, 0],
... [1, 1, 1],
... [1, 1, 1],
... [1, 1, 0]
...])

The connectivity matrix is a square matrix such that the (𝑖, 𝑗)th entry is 1 if there is a connection from node 𝑖 to node
𝑗, and 0 otherwise.

>>> cm = np.array([
... [0, 0, 1],
... [1, 0, 1],
... [1, 1, 0]
...])

We’ll also make labels for the network nodes so that PyPhi’s output is easier to read.

>>> labels = ('A', 'B', 'C')

Now we construct the network itself with the arguments we just created:

>>> network = pyphi.Network(tpm, cm=cm, node_labels=labels)

The next step is to define a subsystem for which we want to evaluate Φ. To make a subsystem, we need the network
that it belongs to, the state of that network, and the indices of the subset of nodes which should be included.

The state should be an 𝑛-tuple, where 𝑛 is the number of nodes in the network, and where the 𝑖th element is the state
of the 𝑖th node in the network.

>>> state = (1, 0, 0)

In this case, we want the Φ of the entire network, so we simply include every node in the network in our subsystem:

4 Chapter 1. Installation

https://ipython.org/install.html

PyPhi Documentation, Release v1.2.1

>>> node_indices = (0, 1, 2)
>>> subsystem = pyphi.Subsystem(network, state, node_indices)

Tip: If you do not explicitly provide node indices to a Subsystem the system will, by default, cover the entire network.
For example, the following is equivalent to the above definition of subsystem:

>>> subsystem = pyphi.Subsystem(network, state)

Tip: Node labels can be used instead of indices when constructing a Subsystem :

>>> pyphi.Subsystem(network, state, ('B', 'C'))
Subsystem(B, C)

Now we use the phi() function to compute the Φ of our subsystem:

>>> pyphi.compute.phi(subsystem)
2.3125

If we want to take a deeper look at the integrated-information-theoretic properties of our network, we can access all the
intermediate quantities and structures that are calculated in the course of arriving at a final Φ value by using sia().
This returns a nested object, SystemIrreducibilityAnalysis, that contains data about the subsystem’s cause-effect
structure, cause and effect repertoires, etc.

>>> sia = pyphi.compute.sia(subsystem)

For instance, we can see that this network has 4 concepts:

>>> len(sia.ces)
4

See the documentation for SystemIrreducibilityAnalysis and Concept for more information on these objects.

Tip: The network and subsystem discussed here are returned by the pyphi.examples.basic_network() and
pyphi.examples.basic_subsystem() functions.

1.4 IIT 3.0 Paper (2014)

This section is meant to serve as a companion to the paper From the Phenomenology to the Mechanisms of Conscious-
ness: Integrated Information Theory 3.0 by Oizumi, Albantakis, and Tononi, and as a demonstration of how to use
PyPhi. Readers are encouraged to follow along and analyze the systems shown in the figures, in order to become more
familiar with both the theory and the software.

Install IPython by running pip install ipython on the command line. Then run it with the command ipython.

Lines of code beginning with >>> and ... can be pasted directly into IPython.

We begin by importing PyPhi and NumPy:

1.4. IIT 3.0 Paper (2014) 5

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003588
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003588
https://ipython.org/install.html

PyPhi Documentation, Release v1.2.1

>>> import pyphi
>>> import numpy as np

1.4.1 Figure 1

Existence: Mechanisms in a state having causal power.
For the first figure, we’ll demonstrate how to set up a network and a candidate set. In PyPhi, networks are built by
specifying a transition probability matrix and (optionally) a connectivity matrix. (If no connectivity matrix is given,
full connectivity is assumed.) So, to set up the system shown in Figure 1, we’ll start by defining its TPM.

Note: The TPM in the figure is given in state-by-state form; there is a row and a column for each state. However, in
PyPhi, we use a more compact representation: state-by-node form, in which there is a row for each state, but a column
for each node. The (𝑖, 𝑗)th entry gives the probability that the 𝑗th node is ON in the 𝑖th state. For more information on
how TPMs are represented in PyPhi, see Transition probability matrix conventions.

In the figure, the TPM is shown only for the candidate set. We’ll define the entire network’s TPM. Also, nodes 𝐷, 𝐸
and 𝐹 are not assigned mechanisms; for the purposes of this example we will assume they are OR gates. With that
assumption, we get the following TPM (before copying and pasting, see note below):

>>> tpm = np.array([
... [0, 0, 0, 0, 0, 0],
... [0, 0, 1, 0, 0, 0],
... [1, 0, 1, 0, 1, 0],
... [1, 0, 0, 0, 1, 0],
... [1, 0, 0, 0, 0, 0],
... [1, 1, 1, 0, 0, 0],
... [1, 0, 1, 0, 1, 0],
... [1, 1, 0, 0, 1, 0],
... [1, 0, 0, 0, 0, 0],
... [1, 0, 1, 0, 0, 0],
... [1, 0, 1, 0, 1, 0],
... [1, 0, 0, 0, 1, 0],
... [1, 0, 0, 0, 0, 0],
... [1, 1, 1, 0, 0, 0],
... [1, 0, 1, 0, 1, 0],
... [1, 1, 0, 0, 1, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 1, 0, 0, 0],
... [1, 0, 1, 0, 1, 0],
... [1, 0, 0, 0, 1, 0],
... [1, 0, 0, 0, 0, 0],
... [1, 1, 1, 0, 0, 0],
... [1, 0, 1, 0, 1, 0],
... [1, 1, 0, 0, 1, 0],
... [1, 0, 0, 0, 0, 0],
... [1, 0, 1, 0, 0, 0],
... [1, 0, 1, 0, 1, 0],
... [1, 0, 0, 0, 1, 0],
... [1, 0, 0, 0, 0, 0],
... [1, 1, 1, 0, 0, 0],

(continues on next page)

6 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

(continued from previous page)

... [1, 0, 1, 0, 1, 0],

... [1, 1, 0, 0, 1, 0],

... [0, 0, 0, 0, 0, 0],

... [0, 0, 1, 0, 0, 0],

... [1, 0, 1, 0, 1, 0],

... [1, 0, 0, 0, 1, 0],

... [1, 0, 0, 0, 0, 0],

... [1, 1, 1, 0, 0, 0],

... [1, 0, 1, 0, 1, 0],

... [1, 1, 0, 0, 1, 0],

... [1, 0, 0, 0, 0, 0],

... [1, 0, 1, 0, 0, 0],

... [1, 0, 1, 0, 1, 0],

... [1, 0, 0, 0, 1, 0],

... [1, 0, 0, 0, 0, 0],

... [1, 1, 1, 0, 0, 0],

... [1, 0, 1, 0, 1, 0],

... [1, 1, 0, 0, 1, 0],

... [0, 0, 0, 0, 0, 0],

... [0, 0, 1, 0, 0, 0],

... [1, 0, 1, 0, 1, 0],

... [1, 0, 0, 0, 1, 0],

... [1, 0, 0, 0, 0, 0],

... [1, 1, 1, 0, 0, 0],

... [1, 0, 1, 0, 1, 0],

... [1, 1, 0, 0, 1, 0],

... [1, 0, 0, 0, 0, 0],

... [1, 0, 1, 0, 0, 0],

... [1, 0, 1, 0, 1, 0],

... [1, 0, 0, 0, 1, 0],

... [1, 0, 0, 0, 0, 0],

... [1, 1, 1, 0, 0, 0],

... [1, 0, 1, 0, 1, 0],

... [1, 1, 0, 0, 1, 0]

...])

Note: This network is already built for you; you can get it from the examples module with network = pyphi.
examples.fig0a(). The TPM can then be accessed with network.tpm.

Next we’ll define the connectivity matrix. In PyPhi, the (𝑖, 𝑗)th entry in a connectivity matrix indicates whether node
𝑖 is connected to node 𝑗. Thus, this network’s connectivity matrix is

>>> cm = np.array([
... [0, 1, 1, 0, 0, 0],
... [1, 0, 1, 0, 1, 0],
... [1, 1, 0, 0, 0, 0],
... [1, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0]
...])

1.4. IIT 3.0 Paper (2014) 7

PyPhi Documentation, Release v1.2.1

Now we can pass the TPM and connectivity matrix as arguments to the network constructor:

>>> network = pyphi.Network(tpm, cm=cm)

Now the network shown in the figure is stored in a variable called network. You can find more information about the
network object we just created by running help(network) or by consulting the documentation for Network .

The next step is to define the candidate set shown in the figure, consisting of nodes 𝐴, 𝐵 and 𝐶. In PyPhi, a candidate
set for Φ evaluation is represented by the Subsystem class. Subsystems are built by giving the network it is a part of,
the state of the network, and indices of the nodes to be included in the subsystem. So, we define our candidate set like
so:

>>> state = (1, 0, 0, 0, 1, 0)
>>> ABC = pyphi.Subsystem(network, state, [0, 1, 2])

For more information on the subsystem object, see the documentation for Subsystem .

That covers the basic workflow with PyPhi and introduces the two types of objects we use to represent and analyze
networks. First you define the network of interest with a TPM and connectivity matrix; then you define a candidate set
you want to analyze.

1.4.2 Figure 3

Information requires selectivity.

(A)

We’ll start by setting up the subsytem depicted in the figure and labeling the nodes. In this case, the subsystem is just
the entire network.

>>> network = pyphi.examples.fig3a()
>>> state = (1, 0, 0, 0)
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C, D = subsystem.node_indices

Since the connections are noisy, we see that 𝐴 = 1 is unselective; all previous states are equally likely:

>>> subsystem.cause_repertoire((A,), (B, C, D))
array([[[[0.125, 0.125],

[0.125, 0.125]],

[[0.125, 0.125],
[0.125, 0.125]]]])

And this gives us zero cause information:

>>> subsystem.cause_info((A,), (B, C, D))
0.0

8 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

(B)

The same as (A) but without noisy connections:

>>> network = pyphi.examples.fig3b()
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C, D = subsystem.node_indices

Now, 𝐴’s cause repertoire is maximally selective.

>>> cr = subsystem.cause_repertoire((A,), (B, C, D))
>>> cr
array([[[[0., 0.],

[0., 0.]],

[[0., 0.],
[0., 1.]]]])

Since the cause repertoire is over the purview𝐵𝐶𝐷, the first dimension (which corresponds to𝐴’s states) is a singleton.
We can squeeze out 𝐴’s singleton dimension with

>>> cr = cr.squeeze()

and now we can see that the probability of 𝐵, 𝐶, and 𝐷 having been all ON is 1:

>>> cr[(1, 1, 1)]
1.0

Now the cause information specified by 𝐴 = 1 is 1.5:

>>> subsystem.cause_info((A,), (B, C, D))
1.5

(C)

The same as (B) but with 𝐴 = 0:

>>> state = (0, 0, 0, 0)
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C, D = subsystem.node_indices

And here the cause repertoire is minimally selective, only ruling out the state where 𝐵, 𝐶, and 𝐷 were all ON:

>>> subsystem.cause_repertoire((A,), (B, C, D))
array([[[[0.14285714, 0.14285714],

[0.14285714, 0.14285714]],

[[0.14285714, 0.14285714],
[0.14285714, 0.]]]])

And so we have less cause information:

>>> subsystem.cause_info((A,), (B, C, D))
0.214284

1.4. IIT 3.0 Paper (2014) 9

PyPhi Documentation, Release v1.2.1

1.4.3 Figure 4

Information: “Differences that make a difference to a system from its own intrinsic perspective.”
First we’ll get the network from the examples module, set up a subsystem, and label the nodes, as usual:

>>> network = pyphi.examples.fig4()
>>> state = (1, 0, 0)
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C = subsystem.node_indices

Then we’ll compute the cause and effect repertoires of mechanism 𝐴 over purview 𝐴𝐵𝐶:

>>> subsystem.cause_repertoire((A,), (A, B, C))
array([[[0. , 0.16666667],

[0.16666667, 0.16666667]],

[[0. , 0.16666667],
[0.16666667, 0.16666667]]])

>>> subsystem.effect_repertoire((A,), (A, B, C))
array([[[0.0625, 0.0625],

[0.0625, 0.0625]],

[[0.1875, 0.1875],
[0.1875, 0.1875]]])

And the unconstrained repertoires over the same (these functions don’t take a mechanism; they only take a purview):

>>> subsystem.unconstrained_cause_repertoire((A, B, C))
array([[[0.125, 0.125],

[0.125, 0.125]],

[[0.125, 0.125],
[0.125, 0.125]]])

>>> subsystem.unconstrained_effect_repertoire((A, B, C))
array([[[0.09375, 0.09375],

[0.03125, 0.03125]],

[[0.28125, 0.28125],
[0.09375, 0.09375]]])

The Earth Mover’s distance between them gives the cause and effect information:

>>> subsystem.cause_info((A,), (A, B, C))
0.333332
>>> subsystem.effect_info((A,), (A, B, C))
0.25

And the minimum of those gives the cause-effect information:

>>> subsystem.cause_effect_info((A,), (A, B, C))
0.25

10 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

1.4.4 Figure 5

A mechanism generates information only if it has both selective causes and selective effects within the system.

(A)

>>> network = pyphi.examples.fig5a()
>>> state = (1, 1, 1)
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C = subsystem.node_indices

𝐴 has inputs, so its cause repertoire is selective and it has cause information:

>>> subsystem.cause_repertoire((A,), (A, B, C))
array([[[0. , 0.],

[0. , 0.5]],

[[0. , 0.],
[0. , 0.5]]])

>>> subsystem.cause_info((A,), (A, B, C))
1.0

But because it has no outputs, its effect repertoire no different from the unconstrained effect repertoire, so it has no
effect information:

>>> np.array_equal(subsystem.effect_repertoire((A,), (A, B, C)),
... subsystem.unconstrained_effect_repertoire((A, B, C)))
True
>>> subsystem.effect_info((A,), (A, B, C))
0.0

And thus its cause effect information is zero.

>>> subsystem.cause_effect_info((A,), (A, B, C))
0.0

(B)

>>> network = pyphi.examples.fig5b()
>>> state = (1, 0, 0)
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C = subsystem.node_indices

Symmetrically, 𝐴 now has outputs, so its effect repertoire is selective and it has effect information:

>>> subsystem.effect_repertoire((A,), (A, B, C))
array([[[0., 0.],

[0., 0.]],

[[0., 0.],
[0., 1.]]])

(continues on next page)

1.4. IIT 3.0 Paper (2014) 11

PyPhi Documentation, Release v1.2.1

(continued from previous page)

>>> subsystem.effect_info((A,), (A, B, C))
0.5

But because it now has no inputs, its cause repertoire is no different from the unconstrained effect repertoire, so it has
no cause information:

>>> np.array_equal(subsystem.cause_repertoire((A,), (A, B, C)),
... subsystem.unconstrained_cause_repertoire((A, B, C)))
True
>>> subsystem.cause_info((A,), (A, B, C))
0.0

And its cause effect information is again zero.

>>> subsystem.cause_effect_info((A,), (A, B, C))
0.0

1.4.5 Figure 6

Integrated information: The information generated by the whole that is irreducible to the information generated
by its parts.

>>> network = pyphi.examples.fig6()
>>> state = (1, 0, 0)
>>> subsystem = pyphi.Subsystem(network, state)
>>> ABC = subsystem.node_indices

Here we demonstrate the functions that find the minimum information partition a mechanism over a purview:

>>> mip_c = subsystem.cause_mip(ABC, ABC)
>>> mip_e = subsystem.effect_mip(ABC, ABC)

These objects contain the 𝜙MIP
cause and 𝜙MIP

effect values in their respective phi attributes, and the minimal partitions in their
partition attributes:

>>> mip_c.phi
0.499999
>>> mip_c.partition
A B,C

×
A,B,C

>>> mip_e.phi
0.25
>>> mip_e.partition

A,B,C
×

B A,C

For more information on these objects, see the documentation for the RepertoireIrreducibilityAnalysis class,
or use help(mip_c).

12 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Note that the minimal partition found for the cause is

𝐴𝑐

∅
× 𝐵𝐶𝑐

𝐴𝐵𝐶𝑝
,

rather than the one shown in the figure. However, both partitions result in a difference of 0.5 between the unpartitioned
and partitioned cause repertoires. So we see that in small networks like this, there can be multiple choices of partition
that yield the same, minimal 𝜙MIP. In these cases, which partition the software chooses is left undefined.

1.4.6 Figure 7

A mechanism generates integrated information only if it has both integrated causes and integrated effects.
It is left as an exercise for the reader to use the subsystem methods cause_mip and effect_mip, introduced in the
previous section, to demonstrate the points made in Figure 7.

To avoid building TPMs and connectivity matrices by hand, you can use the graphical user interface for PyPhi available
online at http://integratedinformationtheory.org/calculate.html. You can build the networks shown in the figure there,
and then use the Export button to obtain a JSON file representing the network. You can then import the file into Python
like so:

network = pyphi.network.from_json('path/to/network.json')

1.4.7 Figure 8

The maximally integrated cause repertoire over the power set of purviews is the “core cause” specified by a
mechanism.

>>> network = pyphi.examples.fig8()
>>> state = (1, 0, 0)
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C = subsystem.node_indices

In PyPhi, the “core cause” is called the maximally-irreducible cause (MIC). To find the MIC of a mechanism over all
purviews, use the mic() method:

>>> mic = subsystem.mic((B, C))
>>> mic.phi
0.333334

Similarly, the mie() method returns the “core effect” or maximally-irreducible effect (MIE).

For a detailed description of the MIC and MIE objects returned by these methods, see the documentation for
MaximallyIrreducibleCause or use help(subsystem.mic) and help(subsystem.mie).

1.4. IIT 3.0 Paper (2014) 13

http://integratedinformationtheory.org/calculate.html
http://en.wikipedia.org/wiki/JSON

PyPhi Documentation, Release v1.2.1

1.4.8 Figure 9

A mechanism that specifies a maximally irreducible cause-effect repertoire.
This figure and the next few use the same network as in Figure 8, so we don’t need to reassign the network and
subsystem variables.

Together, the MIC and MIE of a mechanism specify a concept. In PyPhi, this is represented by the Concept object.
Concepts are computed using the concept() method of a subsystem:

>>> concept_A = subsystem.concept((A,))
>>> concept_A.phi
0.166667

As usual, please consult the documentation or use help(concept_A) for a detailed description of the Concept object.

1.4.9 Figure 10

Information: A conceptual structure C (constellation of concepts) is the set of all concepts generated by a set of
elements in a state.
For functions of entire subsystems rather than mechanisms within them, we use the compute module. In this figure,
we see the constellation of concepts of the powerset of 𝐴𝐵𝐶’s mechanisms. A constellation of concepts is represented
in PyPhi by a CauseEffectStructure. We can compute the cause-effect structure of the subsystem like so:

>>> ces = pyphi.compute.ces(subsystem)

And verify that the 𝜙 values match:

>>> ces.labeled_mechanisms
(['A'], ['B'], ['C'], ['A', 'B'], ['B', 'C'], ['A', 'B', 'C'])
>>> ces.phis
[0.166667, 0.166667, 0.25, 0.25, 0.333334, 0.499999]

The null concept (the small black cross shown in concept-space) is available as an attribute of the subsystem:

>>> subsystem.null_concept.phi
0.0

1.4.10 Figure 11

Assessing the conceptual information CI of a conceptual structure (constellation of concepts).
Conceptual information can be computed using the function named, as you might expect, conceptual_info():

>>> pyphi.compute.conceptual_info(subsystem)
2.111109

14 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

1.4.11 Figure 12

Assessing the integrated conceptual information of a constellation C.
To calculate ΦMIP for a candidate set, we use the function sia():

>>> sia = pyphi.compute.sia(subsystem)

The returned value is a large object containing the ΦMIP value, the minimal cut, the cause-effect structure of the whole set
and that of the partitioned set𝐶MIP

→ , the total calculation time, the calculation time for just the unpartitioned cause-effect
structure, a reference to the subsystem that was analyzed, and a reference to the subsystem with the minimal unidirec-
tional cut applied. For details see the documentation for SystemIrreducibilityAnalysis or use help(sia).

We can verify that the ΦMIP value and minimal cut are as shown in the figure:

>>> sia.phi
1.916665
>>> sia.cut
Cut [A, B] / / [C]

Note: This Cut represents removing any connections from the nodes with indices 0 and 1 to the node with index 2.

1.4.12 Figure 13

A set of elements generates integrated conceptual information only if each subset has both causes and effects in
the rest of the set.
It is left as an exercise for the reader to demonstrate that of the networks shown, only (B) has Φ > 0.

1.4.13 Figure 14

A complex: A local maximum of integrated conceptual information .

>>> network = pyphi.examples.fig14()
>>> state = (1, 0, 0, 0, 1, 0)

To find the subsystem within a network that is the major complex, we use the function of that name, which returns a
SystemIrreducibilityAnalysis object:

>>> major_complex = pyphi.compute.major_complex(network, state)

And we see that the nodes in the complex are indeed 𝐴, 𝐵, and 𝐶:

>>> major_complex.subsystem.nodes
(A, B, C)

1.4. IIT 3.0 Paper (2014) 15

PyPhi Documentation, Release v1.2.1

1.4.14 Figure 15

A quale: The maximally irreducible conceptual structure (MICS) generated by a complex.
You can use the visual interface at http://integratedinformationtheory.org/calculate.html to view a conceptual structure
structure in a 3D projection of qualia space. The network in the figure is already built for you; click the Load Example
button and select “IIT 3.0 Paper, Figure 1” (this network is the same as the candidate set in Figure 1).

1.4.15 Figure 16

A system can condense into a major complex and minor complexes that may or may not interact with it.
For this figure, we omit nodes 𝐻 , 𝐼 , 𝐽 , 𝐾 and 𝐿, since the TPM of the full 12-node network is very large, and the point
can be illustrated without them.

>>> network = pyphi.examples.fig16()
>>> state = (1, 0, 0, 1, 1, 1, 0)

To find the maximal set of non-overlapping complexes that a network condenses into, use condensed():

>>> condensed = pyphi.compute.condensed(network, state)

We find that there are two complexes: the major complex 𝐴𝐵𝐶 with Φ ≈ 1.92, and a minor complex 𝐹𝐺 with
Φ ≈ 0.069 (note that there is typo in the figure: 𝐹𝐺’s Φ value should be 0.069). Furthermore, the program has been
updated to only consider background conditions of current states, not previous states; as a result the minor complex
𝐷𝐸 shown in the paper no longer exists.

>>> len(condensed)
2
>>> ABC, FG = condensed
>>> (ABC.subsystem.nodes, ABC.phi)
((A, B, C), 1.916665)
>>> (FG.subsystem.nodes, FG.phi)
((F, G), 0.069445)

There are several other functions available for working with complexes; see the documentation for subsystems(),
all_complexes(), possible_complexes(), and complexes().

1.5 Conditional Independence

Conditional independence is the property of a TPM that each node’s state at time 𝑡+1 must be independent of the state
of the others, given the state of the network at time 𝑡:

Pr(𝑆𝑡+1 | 𝑆𝑡 = 𝑠𝑡) =
∏︁

𝑁 ∈𝑆

Pr(𝑁𝑡+1 | 𝑆𝑡 = 𝑠𝑡) , ∀ 𝑠𝑡 ∈ 𝑆.

This example explores the assumption of conditional independence, and the behaviour of the program when it is not
satisfied.

Every state-by-node TPM corresponds to a unique state-by-state TPM which satisfies the conditional independence
property (see Transition probability matrix conventions for a discussion of the different TPM forms). If a state-by-node
TPM is given as input for a Network , PyPhi assumes that it is from a system with the corresponding conditionally
independent state-by-state TPM.

16 Chapter 1. Installation

http://integratedinformationtheory.org/calculate.html

PyPhi Documentation, Release v1.2.1

When a state-by-state TPM is given as input for a Network , the state-by-state TPM is first converted to a state-by-node
TPM. PyPhi then assumes that the system corresponds to the unique conditionally independent representation of the
state-by-node TPM.

Note: Every deterministic state-by-state TPM satisfies the conditional independence property.

Consider a system of two binary nodes (𝐴 and 𝐵) which do not change if they have the same value, but flip with
probability 50% if they have different values.

We’ll load the state-by-state TPM for such a system from the examples module:

>>> import pyphi
>>> tpm = pyphi.examples.cond_depend_tpm()
>>> print(tpm)
[[1. 0. 0. 0.]
[0. 0.5 0.5 0.]
[0. 0.5 0.5 0.]
[0. 0. 0. 1.]]

This system does not satisfy the conditional independence property; given a previous state of (1, 0), the current state
of node 𝐴 depends on whether or not 𝐵 has flipped.

If a conditionally dependent TPM is used to create a Network , PyPhi will raise an error:

>>> network = pyphi.Network(tpm)
Traceback (most recent call last):

...
pyphi.exceptions.ConditionallyDependentError: TPM is not conditionally independent.
See the conditional independence example in the documentation for more info.

To see the conditionally independent TPM that corresponds to the conditionally dependent TPM, convert it to state-by-
node form and then back to state-by-state form:

>>> sbn_tpm = pyphi.convert.state_by_state2state_by_node(tpm)
>>> print(sbn_tpm)
[[[0. 0.]
[0.5 0.5]]

[[0.5 0.5]
[1. 1.]]]

>>> sbs_tpm = pyphi.convert.state_by_node2state_by_state(sbn_tpm)
>>> print(sbs_tpm)
[[1. 0. 0. 0.]
[0.25 0.25 0.25 0.25]
[0.25 0.25 0.25 0.25]
[0. 0. 0. 1.]]

A system which does not satisfy the conditional independence property exhibits “instantaneous causality.” In such
situations, there must be additional exogenous variable(s) which explain the dependence.

Now consider the above example, but with the addition of a third node (𝐶) which is equally likely to be ON or OFF,
and such that when nodes 𝐴 and 𝐵 are in different states, they will flip when 𝐶 is ON, but stay the same when 𝐶 is
OFF.

1.5. Conditional Independence 17

PyPhi Documentation, Release v1.2.1

>>> tpm2 = pyphi.examples.cond_independ_tpm()
>>> print(tpm2)
[[0.5 0. 0. 0. 0.5 0. 0. 0.]
[0. 0.5 0. 0. 0. 0.5 0. 0.]
[0. 0. 0.5 0. 0. 0. 0.5 0.]
[0. 0. 0. 0.5 0. 0. 0. 0.5]
[0.5 0. 0. 0. 0.5 0. 0. 0.]
[0. 0. 0.5 0. 0. 0. 0.5 0.]
[0. 0.5 0. 0. 0. 0.5 0. 0.]
[0. 0. 0. 0.5 0. 0. 0. 0.5]]

The resulting state-by-state TPM now satisfies the conditional independence property.

>>> sbn_tpm2 = pyphi.convert.state_by_state2state_by_node(tpm2)
>>> print(sbn_tpm2)
[[[[0. 0. 0.5]
[0. 0. 0.5]]

[[0. 1. 0.5]
[1. 0. 0.5]]]

[[[1. 0. 0.5]
[0. 1. 0.5]]

[[1. 1. 0.5]
[1. 1. 0.5]]]]

The node indices are 0 and 1 for 𝐴 and 𝐵, and 2 for 𝐶:

>>> AB = [0, 1]
>>> C = [2]

From here, if we marginalize out the node 𝐶;

>>> tpm2_marginalizeC = pyphi.tpm.marginalize_out(C, sbn_tpm2)

And then restrict the purview to only nodes 𝐴 and 𝐵;

>>> import numpy as np
>>> tpm2_purviewAB = np.squeeze(tpm2_marginalizeC[:,:,:,AB])

We get back the original state-by-node TPM from the system with just 𝐴 and 𝐵.

>>> np.all(tpm2_purviewAB == sbn_tpm)
True

18 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

1.6 XOR Network

This example describes a system of three fully connected XOR nodes, 𝐴, 𝐵 and 𝐶 (no self-connections).

First let’s create the XOR network:

>>> import pyphi
>>> network = pyphi.examples.xor_network()

We’ll consider the state with all nodes OFF.

>>> state = (0, 0, 0)

According to IIT, existence is a holistic notion; the whole is more important than its parts. The first step is to confirm
the existence of the whole, by finding the major complex of the network:

>>> major_complex = pyphi.compute.major_complex(network, state)

The major complex exists (Φ > 0),

>>> major_complex.phi
1.874999

and it consists of the entire network:

>>> major_complex.subsystem
Subsystem(A, B, C)

Knowing what exists at the system level, we can now investigate the existence of concepts within the complex.

>>> ces = major_complex.ces
>>> len(ces)
3
>>> ces.labeled_mechanisms
(['A', 'B'], ['A', 'C'], ['B', 'C'])

There are three concepts in the cause-effect structure. They are all the possible second order mechanisms: 𝐴𝐵, 𝐴𝐶
and 𝐵𝐶.

Focusing on the concept specified by mechanism 𝐴𝐵, we investigate existence, and the irreducible cause and effect.
Based on the symmetry of the network, the results will be similar for the other second order mechanisms.

>>> concept = ces[0]
>>> concept.mechanism
(0, 1)
>>> concept.phi
0.5

The concept has 𝜙 = 1
2 .

>>> concept.cause.purview
(0, 1, 2)
>>> concept.cause.repertoire
array([[[0.5, 0.],

[0. , 0.]],
(continues on next page)

1.6. XOR Network 19

PyPhi Documentation, Release v1.2.1

(continued from previous page)

[[0. , 0.],
[0. , 0.5]]])

So we see that the cause purview of this mechanism is the whole system 𝐴𝐵𝐶, and that the repertoire shows a 0.5 of
probability the previous state being (0, 0, 0) and the same for (1, 1, 1):

>>> concept.cause.repertoire[(0, 0, 0)]
0.5
>>> concept.cause.repertoire[(1, 1, 1)]
0.5

This tells us that knowing both 𝐴 and 𝐵 are currently OFF means that the previous state of the system was either all
OFF or all ON with equal probability.

For any reduced purview, we would still have the same information about the elements in the purview (either all ON or
all OFF), but we would lose the information about the elements outside the purview.

>>> concept.effect.purview
(2,)
>>> concept.effect.repertoire
array([[[1., 0.]]])

The effect purview of this concept is the node 𝐶. The mechanism 𝐴𝐵 is able to completely specify the next state of
𝐶. Since both nodes are OFF, the next state of 𝐶 will be OFF.

The mechanism 𝐴𝐵 does not provide any information about the next state of either 𝐴 or 𝐵, because the relationship
depends on the value of 𝐶. That is, the next state of 𝐴 (or 𝐵) may be either ON or OFF, depending on the value of 𝐶.
Any purview larger than 𝐶 would be reducible by pruning away the additional elements.

Major Complex: 𝐴𝐵𝐶 with Φ = 1.875
Mechanism 𝜙 Cause Purview Effect Purview
𝐴𝐵 0.5 𝐴𝐵𝐶 𝐶
𝐴𝐶 0.5 𝐴𝐵𝐶 𝐵
𝐵𝐶 0.5 𝐴𝐵𝐶 𝐴

An analysis of the intrinsic existence of this system reveals that the major complex of the system is the entire network
of XOR nodes. Furthermore, the concepts which exist within the complex are those specified by the second-order
mechanisms 𝐴𝐵, 𝐴𝐶, and 𝐵𝐶.

To understand the notion of intrinsic existence, in addition to determining what exists for the system, it is useful to
consider also what does not exist.

Specifically, it may be surprising that none of the first order mechanisms 𝐴, 𝐵 or 𝐶 exist. This physical system of XOR
gates is sitting on the table in front of me; I can touch the individual elements of the system, so how can it be that they
do not exist?

That sort of existence is what we term extrinsic existence. The XOR gates exist for me as an observer, external to the
system. I am able to manipulate them, and observe their causes and effects, but the question that matters for intrinsic
existence is, do they have irreducible causes and effects within the system? There are two reasons a mechanism may
have no irreducible cause-effect power: either the cause-effect power is completely reducible, or there was no cause-
effect power to begin with. In the case of elementary mechanisms, it must be the latter.

To see this, again due to symmetry of the system, we will focus only on the mechanism 𝐴.

20 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

>>> subsystem = pyphi.examples.xor_subsystem()
>>> A = (0,)
>>> ABC = (0, 1, 2)

In order to exist, a mechanism must have irreducible cause and effect power within the system.

>>> subsystem.cause_info(A, ABC)
0.5
>>> subsystem.effect_info(A, ABC)
0.0

The mechanism has no effect power over the entire subsystem, so it cannot have effect power over any purview within
the subsystem. Furthermore, if a mechanism has no effect power, it certainly has no irreducible effect power. The
first-order mechanisms of this system do not exist intrinsically, because they have no effect power (having causal power
is not enough).

To see why this is true, consider the effect of 𝐴. There is no self-loop, so 𝐴 can have no effect on itself. Without
knowing the current state of 𝐴, in the next state 𝐵 could be either ON or OFF. If we know that the current state of 𝐴 is
ON, then 𝐵 could still be either ON or OFF, depending on the state of 𝐶. Thus, on its own, the current state of 𝐴 does
not provide any information about the next state of 𝐵. A similar result holds for the effect of 𝐴 on 𝐶. Since 𝐴 has no
effect power over any element of the system, it does not exist from the intrinsic perspective.

To complete the discussion, we can also investigate the potential third order mechanism 𝐴𝐵𝐶. Consider the cause
information over the purview 𝐴𝐵𝐶:

>>> subsystem.cause_info(ABC, ABC)
0.749999

Since the mechanism has nonzero cause information, it has causal power over the system—but is it irreducible?

>>> mip = subsystem.cause_mip(ABC, ABC)
>>> mip.phi
0.0
>>> mip.partition
A B,C

×
A,B,C

The mechanism has 𝑐𝑖 = 0.75, but it is completely reducible (𝜙 = 0) to the partition

𝐴

∅
× 𝐵𝐶

𝐴𝐵𝐶

This result can be understood as follows: knowing that 𝐵 and 𝐶 are OFF in the current state is sufficient to know that
𝐴, 𝐵, and 𝐶 were all OFF in the previous state; there is no additional information gained by knowing that 𝐴 is currently
OFF.

Similarly for any other potential purview, the current state of 𝐵 and 𝐶 being (0, 0) is always enough to fully specify
the previous state, so the mechanism is reducible for all possible purviews, and hence does not exist.

1.6. XOR Network 21

PyPhi Documentation, Release v1.2.1

1.7 Emergence (coarse-graining and blackboxing)

1.7.1 Coarse-graining

We’ll use the macro module to explore alternate spatial scales of a network. The network under consideration is a
4-node non-deterministic network, available from the examples module.

>>> import pyphi
>>> network = pyphi.examples.macro_network()

The connectivity matrix is all-to-all:

>>> network.cm
array([[1., 1., 1., 1.],

[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])

We’ll set the state so that nodes are OFF.

>>> state = (0, 0, 0, 0)

At the “micro” spatial scale, we can compute the major complex, and determine the Φ value:

>>> major_complex = pyphi.compute.major_complex(network, state)
>>> major_complex.phi
0.113889

The question is whether there are other spatial scales which have greater values of Φ. This is accomplished by con-
sidering all possible coarse-graining of micro-elements to form macro-elements. A coarse-graining of nodes is any
partition of the elements of the micro system. First we’ll get a list of all possible coarse-grainings:

>>> grains = list(pyphi.macro.all_coarse_grains(network.node_indices))

We start by considering the first coarse grain:

>>> coarse_grain = grains[0]

Each CoarseGrain has two attributes: the partition of states into macro elements, and the grouping of micro-
states into macro-states. Let’s first look at the partition:

>>> coarse_grain.partition
((0, 1, 2), (3,))

There are two macro-elements in this partition: one consists of micro-elements (0, 1, 2) and the other is simply
micro-element 3.

We must then determine the relationship between micro-elements and macro-elements. When coarse-graining the
system we assume that the resulting macro-elements do not differentiate the different micro-elements. Thus any cor-
respondence between states must be stated solely in terms of the number of micro-elements which are ON, and not
depend on which micro-elements are ON.

For example, consider the macro-element (0, 1, 2). We may say that the macro-element is ON if at least one micro-
element is ON, or if all micro-elements are ON; however, we may not say that the macro-element is ON if micro-element
1 is ON, because this relationship involves identifying specific micro-elements.

22 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

The grouping attribute of the CoarseGrain describes how the state of micro-elements describes the state of macro-
elements:

>>> grouping = coarse_grain.grouping
>>> grouping
(((0, 1, 2), (3,)), ((0,), (1,)))

The grouping consists of two lists, one for each macro-element:

>>> grouping[0]
((0, 1, 2), (3,))

For the first macro-element, this grouping means that the element will be OFF if zero, one or two of its micro-elements
are ON, and will be ON if all three micro-elements are ON.

>>> grouping[1]
((0,), (1,))

For the second macro-element, the grouping means that the element will be OFF if its micro-element is OFF, and ON
if its micro-element is ON.

One we have selected a partition and grouping for analysis, we can create a mapping between micro-states and macro-
states:

>>> mapping = coarse_grain.make_mapping()
>>> mapping
array([0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 3])

The interpretation of the mapping uses the little-endian convention of indexing (see Little-endian convention).

>>> mapping[7]
1

This says that micro-state 7 corresponds to macro-state 1:

>>> pyphi.convert.le_index2state(7, 4)
(1, 1, 1, 0)

>>> pyphi.convert.le_index2state(1, 2)
(1, 0)

In micro-state 7, all three elements corresponding to the first macro-element are ON, so that macro-element is ON. The
micro-element corresponding to the second macro-element is OFF, so that macro-element is OFF.

The CoarseGrain object uses the mapping internally to create a state-by-state TPM for the macro-system correspond-
ing to the selected partition and grouping

>>> coarse_grain.macro_tpm(network.tpm)
Traceback (most recent call last):

...
pyphi.exceptions.ConditionallyDependentError...

However, this macro-TPM does not satisfy the conditional independence assumption, so this particular partition and
grouping combination is not a valid coarse-graining of the system. Constructing a MacroSubsystem with this coarse-
graining will also raise a ConditionallyDependentError.

Let’s consider a different coarse-graining instead.

1.7. Emergence (coarse-graining and blackboxing) 23

PyPhi Documentation, Release v1.2.1

>>> coarse_grain = grains[14]
>>> coarse_grain.partition
((0, 1), (2, 3))
>>> coarse_grain.grouping
(((0, 1), (2,)), ((0, 1), (2,)))

>>> mapping = coarse_grain.make_mapping()
>>> mapping
array([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 3])

>>> coarse_grain.macro_tpm(network.tpm)
array([[[0.09, 0.09],

[1. , 0.09]],

[[0.09, 1.],
[1. , 1.]]])

We can now construct a MacroSubsystem using this coarse-graining:

>>> macro_subsystem = pyphi.macro.MacroSubsystem(
... network, state, coarse_grain=coarse_grain)
>>> macro_subsystem
MacroSubsystem((m0, m1))

We can then consider the integrated information of this macro-network and compare it to the micro-network.

>>> macro_sia = pyphi.compute.sia(macro_subsystem)
>>> macro_sia.phi
0.597212

The integrated information of the macro subsystem (Φ = 0.597212) is greater than the integrated information of the mi-
cro system (Φ = 0.113889). We can conclude that a macro-scale is appropriate for this system, but to determine which
one, we must check all possible partitions and all possible groupings to find the maximum of integrated information
across all scales.

>>> M = pyphi.macro.emergence(network, state)
>>> M.emergence
0.483323
>>> M.system
(0, 1, 2, 3)
>>> M.coarse_grain.partition
((0, 1), (2, 3))
>>> M.coarse_grain.grouping
(((0, 1), (2,)), ((0, 1), (2,)))

The analysis determines the partition and grouping which results in the maximum value of integrated information, as
well as the emergence (increase in Φ) from the micro-scale to the macro-scale.

24 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

1.7.2 Blackboxing

• pyphi.examples.blackbox_network()

The macro module also provides tools for studying the emergence of systems using blackboxing.

>>> import pyphi
>>> network = pyphi.examples.blackbox_network()

We consider the state where all nodes are OFF:

>>> state = (0, 0, 0, 0, 0, 0)

The system has minimal Φ without blackboxing:

>>> subsys = pyphi.Subsystem(network, state)
>>> pyphi.compute.phi(subsys)
0.215278

We will consider the blackbox system consisting of two blackbox elements, 𝐴𝐵𝐶 and𝐷𝐸𝐹 , where𝐶 and𝐹 are output
elements and 𝐴𝐵 and 𝐷𝐸 are hidden within their respective blackboxes.

Blackboxing is done with a Blackbox object. As with CoarseGrain, we pass it a partition of micro-elements:

>>> partition = ((0, 1, 2), (3, 4, 5))
>>> output_indices = (2, 5)
>>> blackbox = pyphi.macro.Blackbox(partition, output_indices)

Blackboxes have a few convenient attributes and methods. The hidden_indices attribute returns the elements which
are hidden within blackboxes:

>>> blackbox.hidden_indices
(0, 1, 3, 4)

The micro_indices attribute lists all the micro-elements in the box:

>>> blackbox.micro_indices
(0, 1, 2, 3, 4, 5)

The macro_indices attribute generates a set of indices which index the blackbox macro-elements. Since there are
two blackboxes in our example, and each has one output element, there are two macro-indices:

>>> blackbox.macro_indices
(0, 1)

The macro_state method converts a state of the micro elements to the state of the macro-elements. The macro-state
of a blackbox system is simply the state of the system’s output elements:

>>> micro_state = (0, 0, 0, 0, 0, 1)
>>> blackbox.macro_state(micro_state)
(0, 1)

Let us also define a time scale over which to perform our analysis:

>>> time_scale = 2

As in the coarse-graining example, the blackbox and time scale are passed to MacroSubsystem :

1.7. Emergence (coarse-graining and blackboxing) 25

PyPhi Documentation, Release v1.2.1

>>> macro_subsystem = pyphi.macro.MacroSubsystem(network, state,
... blackbox=blackbox,
... time_scale=time_scale)

We can now compute Φ for this macro system:

>>> pyphi.compute.phi(macro_subsystem)
0.638888

We find that the macro subsystem has greater integrated information (Φ = 0.638888) than the micro system (Φ =
0.215278)—the system demonstrates emergence.

1.8 Actual Causation

This section demonstrates how to use PyPhi to evaluate actual causation, as described in

Albantakis L, Marshall W, Hoel E, Tononi G (2019). What Caused What? A quantitative Account of
Actual Causation Using Dynamical Causal Networks. Entropy, 21 (5), pp. 459. https://doi.org/10.3390/
e21050459

First, we’ll import the modules we need:

>>> import pyphi
>>> from pyphi import actual, config, Direction

1.8.1 Configuration

Before we begin we need to set some configuration values. The correct way of partitioning for actual causation is using
the 'ALL' partitions setting; 'TRI'-partitions are a reasonable approximation. In case of ties the smaller purview
should be chosen. IIT 3.0 style bipartitions will give incorrect results.

>>> config.PARTITION_TYPE = 'TRI'
>>> config.PICK_SMALLEST_PURVIEW = True

When calculating a causal account of the transition between a set of elements 𝑋 at time 𝑡 − 1 and a set of elements
𝑌 at time 𝑡, with 𝑋 and 𝑌 being subsets of the same system, the transition should be valid according to the system’s
TPM. However, the state of 𝑋 at 𝑡− 1 does not necessarily need to have a valid previous state so we can disable state
validation:

>>> config.VALIDATE_SUBSYSTEM_STATES = False

1.8.2 Computation

We will look at how to perform computations over the basic OR-AND network introduced in Figure 1 of the paper.

>>> network = pyphi.examples.actual_causation()

This is a standard PyPhi Network so we can look at its TPM:

26 Chapter 1. Installation

https://doi.org/10.3390/e21050459
https://doi.org/10.3390/e21050459

PyPhi Documentation, Release v1.2.1

>>> pyphi.convert.state_by_node2state_by_state(network.tpm)
array([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.]])

The OR gate is element 0, and the AND gate is element 1 in the network.

>>> OR = 0
>>> AND = 1

We want to observe both elements at 𝑡− 1 and 𝑡, with OR ON and AND OFF in both observations:

>>> X = Y = (OR, AND)
>>> X_state = Y_state = (1, 0)

The Transition object is the core of all actual causation calculations. To instantiate a Transition, we pass it a
Network , the state of the network at 𝑡− 1 and 𝑡, and elements of interest at 𝑡− 1 and 𝑡. Note that PyPhi requires the
state to be the state of the entire network, not just the state of the nodes in the transition.

>>> transition = actual.Transition(network, X_state, Y_state, X, Y)

Cause and effect repertoires can be obtained for the transition. For example, as shown on the right side of Figure 2B, we
can compute the effect repertoire to see how 𝑋𝑡−1 = {𝑂𝑅 = 1} constrains the probability distribution of the purview
𝑌𝑡 = {𝑂𝑅,𝐴𝑁𝐷}:

>>> transition.effect_repertoire((OR,), (OR, AND))
array([[0. , 0.],

[0.5, 0.5]])

Similarly, as in Figure 2C, we can compute the cause repertoire of 𝑌𝑡 = {𝑂𝑅,𝐴𝑁𝐷 = 10} to see how it constrains
the purview 𝑋𝑡−1 = {𝑂𝑅}:

>>> transition.cause_repertoire((OR, AND), (OR,))
array([[0.5],

[0.5]])

Note: In all Transition methods the constraining occurence is passed as the mechanism argument and the con-
strained occurence is the purview argument. This mirrors the terminology introduced in the IIT code.

Transition also provides methods for computing cause and effect ratios. For example, the effect ratio of 𝑋𝑡−1 =
{𝑂𝑅 = 1} constraining 𝑌𝑡 = {𝑂𝑅} (as shown in Figure 3A) is computed as follows:

>>> transition.effect_ratio((OR,), (OR,))
0.415037

The effect ratio of 𝑋𝑡−1 = {𝑂𝑅 = 1} constraining 𝑌𝑡 = {𝐴𝑁𝐷} is negative:

>>> transition.effect_ratio((OR,), (AND,))
-0.584963

And the cause ratio of 𝑌𝑡 = {𝑂𝑅 = 1} constraining 𝑋𝑡−1 = {𝑂𝑅,𝐴𝑁𝐷} (Figure 3B) is:

1.8. Actual Causation 27

PyPhi Documentation, Release v1.2.1

>>> transition.cause_ratio((OR,), (OR, AND))
0.415037

We can evaluate 𝛼 for a particular pair of occurences, as in Figure 3C. For example, to find the irreducible effect ratio
of {𝑂𝑅,𝐴𝑁𝐷} → {𝑂𝑅,𝐴𝑁𝐷}, we use the find_mip method:

>>> link = transition.find_mip(Direction.EFFECT, (OR, AND), (OR, AND))

This returns a AcRepertoireIrreducibilityAnalysis object, with a number of useful properties. This particular
MIP is reducible, as we can see by checking the value of 𝛼:

>>> link.alpha
0.0

The partition property shows the minimum information partition that reduces the occurence and candidate effect:

>>> link.partition
OR AND

× ×
OR AND

Let’s look at the MIP for the irreducible occurence 𝑌𝑡 = {𝑂𝑅,𝐴𝑁𝐷} constraining 𝑋𝑡−1 = {𝑂𝑅,𝐴𝑁𝐷} (Figure
3D). This candidate causal link has positive 𝛼:

>>> link = transition.find_mip(Direction.CAUSE, (OR, AND), (OR, AND))
>>> link.alpha
0.169925

To find the actual cause or actual effect of a particular occurence, use the find_actual_cause or
find_actual_effect methods:

>>> transition.find_actual_cause((OR, AND))
CausalLink
= 0.1699 [OR, AND] [OR, AND]

1.8.3 Accounts

The complete causal account of our transition can be computed with the account function:

>>> account = actual.account(transition)
>>> print(account)

Account (5 causal links)

Irreducible effects
= 0.415 [OR] [OR]
= 0.415 [AND] [AND]
Irreducible causes
= 0.415 [OR] [OR]
= 0.415 [AND] [AND]
= 0.1699 [OR, AND] [OR, AND]

We see that this function produces the causal links shown in Figure 4. The Account object is a subclass of tuple, and
can manipulated the same:

28 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

>>> len(account)
5

1.8.4 Irreducible Accounts

The irreducibility of the causal account of our transition of interest can be evaluated using the following function:

>>> sia = actual.sia(transition)
>>> sia.alpha
0.169925

As shown in Figure 4, the second order occurence 𝑌𝑡 = {𝑂𝑅,𝐴𝑁𝐷 = 10} is destroyed by the MIP:

>>> sia.partitioned_account

Account (4 causal links)

Irreducible effects
= 0.415 [OR] [OR]
= 0.415 [AND] [AND]
Irreducible causes
= 0.415 [OR] [OR]
= 0.415 [AND] [AND]

The partition of the MIP is available in the cut property:

>>> sia.cut
KCut CAUSE

OR AND
× ×
OR AND

To find all irreducible accounts within the transition of interest, use nexus:

>>> all_accounts = actual.nexus(network, X_state, Y_state)

This computes 𝒜 for all permutations of of elements in 𝑋𝑡−1 and 𝑌𝑡 and returns a tuple of all
AcSystemIrreducibilityAnalysis objects with 𝒜 > 0:

>>> for n in all_accounts:
... print(n.transition, n.alpha)
Transition([OR] [OR]) 2.0
Transition([AND] [AND]) 2.0
Transition([OR, AND] [OR, AND]) 0.169925

The causal_nexus function computes the maximally irreducible account for the transition of interest:

>>> cn = actual.causal_nexus(network, X_state, Y_state)
>>> cn.alpha
2.0
>>> cn.transition
Transition([OR] [OR])

1.8. Actual Causation 29

PyPhi Documentation, Release v1.2.1

1.8.5 Disjunction of conjunctions

If you are interested in exploring further, the disjunction of conjunctions network from Figure 7 is provided as well:

>>> network = pyphi.examples.disjunction_conjunction_network()
>>> cn = actual.causal_nexus(network, (1, 0, 1, 0), (0, 0, 0, 1))

The only irreducible transition is from 𝑋𝑡−1 = 𝐶 to 𝑌𝑡 = 𝐷, with 𝒜 of 2.0:

>>> cn.transition
Transition([C] [D])
>>> cn.alpha
2.0

1.9 Residue

This example describes a system containing two AND gates, 𝐴 and 𝐵, with a single overlapping input node.

First let’s create the subsystem corresponding to the residue network, with all nodes OFF in the current and previous
states.

>>> import pyphi
>>> subsystem = pyphi.examples.residue_subsystem()

Next, we can define the mechanisms of interest. Mechanisms and purviews are represented by tuples of node indices
in the network:

>>> A = (0,)
>>> B = (1,)
>>> AB = (0, 1)

And the possible cause purviews that we’re interested in:

>>> CD = (2, 3)
>>> DE = (3, 4)
>>> CDE = (2, 3, 4)

We can then evaluate the cause information for each of the mechanisms over the cause purview 𝐶𝐷𝐸.

>>> subsystem.cause_info(A, CDE)
0.333332

>>> subsystem.cause_info(B, CDE)
0.333332

>>> subsystem.cause_info(AB, CDE)
0.5

The composite mechanism𝐴𝐵 has greater cause information than either of the individual mechanisms. This contradicts
the idea that 𝐴𝐵 should exist minimally in this system.

Instead, we can quantify existence as the irreducible cause information of a mechanism. The MIP of a mechanism is the
partition of mechanism and purview which makes the least difference to the cause repertoire (see the documentation

30 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

for the RepertoireIrreducibilityAnalysis object). The irreducible cause information is the distance between
the unpartitioned and partitioned repertoires.

To analyze the irreducibility of the mechanism 𝐴𝐵 on the cause side:

>>> mip_AB = subsystem.cause_mip(AB, CDE)

We can then determine what the specific partition is.

>>> mip_AB.partition
A,B

×
C D,E

The indices (0, 1, 2, 3, 4) correspond to nodes 𝐴,𝐵,𝐶,𝐷,𝐸 respectively. Thus the MIP is 𝐴𝐵
𝐷𝐸 × ∅

𝐶 , where ∅
denotes the empty mechanism.

The partitioned repertoire of the MIP can also be retrieved:

>>> mip_AB.partitioned_repertoire
array([[[[[0.2, 0.2],

[0.1, 0.]],

[[0.2, 0.2],
[0.1, 0.]]]]])

And we can then calculate the irreducible cause information as the difference between partitioned and unpartitioned
repertoires.

>>> mip_AB.phi
0.1

One counterintuitive result that merits discussion is that since irreducible cause information is what defines existence,
we must also evaluate the irreducible cause information of the mechanisms 𝐴 and 𝐵.

The mechanism 𝐴 over the purview 𝐶𝐷𝐸 is completely reducible to 𝐴
𝐶𝐷 × ∅

𝐸 because 𝐸 has no effect on 𝐴, so it has
zero 𝜙.

>>> subsystem.cause_mip(A, CDE).phi
0.0
>>> subsystem.cause_mip(A, CDE).partition

A
×

E C,D

Instead, we should evaluate 𝐴 over the purview 𝐶𝐷.

>>> mip_A = subsystem.cause_mip(A, CD)

In this case, there is a well-defined MIP

>>> mip_A.partition
A

×
C D

which is ∅
𝐶 × 𝐴

𝐷 . It has partitioned repertoire

1.9. Residue 31

PyPhi Documentation, Release v1.2.1

>>> mip_A.partitioned_repertoire
array([[[[[0.33333333],

[0.16666667]],

[[0.33333333],
[0.16666667]]]]])

and irreducible cause information

>>> mip_A.phi
0.166667

A similar result holds for 𝐵. Thus the mechanisms 𝐴 and 𝐵 exist at levels of 𝜙 = 1
6 , while the higher-order mechanism

𝐴𝐵 exists only as the residual of causes, at a level of 𝜙 = 1
10 .

1.10 Magic Cuts

This example explores a system of three fully connected elements 𝐴, 𝐵 and 𝐶, which follow the logic of the Rule 110
cellular automaton. The point of this example is to highlight an unexpected behaviour of system cuts: that the minimum
information partition of a system can result in new concepts being created.

First let’s create the the Rule 110 network, with all nodes OFF in the current state.

>>> import pyphi
>>> network = pyphi.examples.rule110_network()
>>> state = (0, 0, 0)

Next, we want to identify the spatial scale and major complex of the network:

>>> macro = pyphi.macro.emergence(network, state)
>>> print(macro.emergence)
-1.112671

Since the emergence value is negative, there is no macro scale which has greater integrated information than the original
micro scale. We can now analyze the micro scale to determine the major complex of the system:

>>> major_complex = pyphi.compute.major_complex(network, state)
>>> major_complex.subsystem
Subsystem(A, B, C)
>>> print(major_complex.phi)
1.35708

The major complex of the system contains all three nodes of the system, and it has integrated information Φ = 1.35708.
Now that we have identified the major complex of the system, we can explore its cause-effect structure and the effect
of the MIP.

>>> ces = major_complex.ces

There two equivalent cuts for this system; for concreteness we sever all connections from elements 𝐴 and 𝐵 to 𝐶.

>>> cut = pyphi.models.Cut(from_nodes=(0, 1), to_nodes=(2,))
>>> cut_subsystem = pyphi.Subsystem(network, state, cut=cut)
>>> cut_ces = pyphi.compute.ces(cut_subsystem)

32 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Let’s investigate the concepts in the unpartitioned cause-effect structure,

>>> ces.labeled_mechanisms
(['A'], ['B'], ['C'], ['A', 'B'], ['A', 'C'], ['B', 'C'])
>>> ces.phis
[0.125, 0.125, 0.125, 0.499999, 0.499999, 0.499999]
>>> sum(ces.phis)
1.8749970000000002

and also the concepts of the partitioned cause-effect structure.

>>> cut_ces.labeled_mechanisms
(['A'], ['B'], ['C'], ['A', 'B'], ['B', 'C'], ['A', 'B', 'C'])
>>> cut_ces.phis
[0.125, 0.125, 0.125, 0.499999, 0.266666, 0.333333]
>>> sum(_)
1.4749980000000003

The unpartitioned cause-effect structure includes all possible first and second order concepts, but there is no third order
concept. After applying the cut and severing the connections from 𝐴 and 𝐵 to 𝐶, the third order concept 𝐴𝐵𝐶 is
created and the second order concept 𝐴𝐶 is destroyed. The overall amount of 𝜙 in the system decreases from 1.875 to
1.475.

Let’s explore the concept which was created to determine why it does not exist in the unpartitioned cause-effect structure
and what changed in the partitioned cause-effect structure.

>>> subsystem = major_complex.subsystem
>>> ABC = subsystem.node_indices
>>> subsystem.cause_info(ABC, ABC)
0.749999
>>> subsystem.effect_info(ABC, ABC)
1.875

The mechanism does have cause and effect power over the system. But, since it doesn’t specify a concept, it must be
that this power is reducible:

>>> mic = subsystem.mic(ABC)
>>> mic.phi
0.0
>>> mie = subsystem.mie(ABC)
>>> mie.phi
0.625

The reason ABC does not exist as a concept is that its cause is reducible. Looking at the TPM of the system, there are
no possible states where two elements are OFF. This means that knowing two elements are OFF is enough to know that
the third element must also be OFF, and thus the third element can always be cut from the concept without a loss of
information. This will be true for any purview, so the cause information is reducible.

>>> BC = (1, 2)
>>> A = (0,)
>>> repertoire = subsystem.cause_repertoire(ABC, ABC)
>>> cut_repertoire = (subsystem.cause_repertoire(BC, ABC) *
... subsystem.cause_repertoire(A, ()))
>>> pyphi.distance.hamming_emd(repertoire, cut_repertoire)
0.0

1.10. Magic Cuts 33

PyPhi Documentation, Release v1.2.1

Next, let’s look at the cut subsystem to understand how the new concept comes into existence.

>>> ABC = (0, 1, 2)
>>> C = (2,)
>>> AB = (0, 1)

The cut applied to the subsystem severs the connections going to 𝐶 from either 𝐴 or 𝐵. In this circumstance, knowing
the state of 𝐴 or 𝐵 does not tell us anything about the state of 𝐶; only the previous state of 𝐶 can tell us about the next
state of 𝐶. C_node.tpm_on gives us the probability of 𝐶 being ON in the next state, while C_node.tpm_off would
give us the probability of 𝐶 being OFF.

>>> C_node = cut_subsystem.indices2nodes(C)[0]
>>> C_node.tpm_on.flatten()
array([0.5 , 0.75])

This states that 𝐶 has a 50% chance of being ON in the next state if it currently OFF, but a 75% chance of being ON
in the next state if it is currently ON. Thus, unlike the unpartitioned case, knowing the current state of 𝐶 gives us
additional information over and above knowing the state of 𝐴 or 𝐵.

>>> repertoire = cut_subsystem.cause_repertoire(ABC, ABC)
>>> cut_repertoire = (cut_subsystem.cause_repertoire(AB, ABC) *
... cut_subsystem.cause_repertoire(C, ()))
>>> print(pyphi.distance.hamming_emd(repertoire, cut_repertoire))
0.500001

With this partition, the integrated information is 𝜙 = 0.5, but we must check all possible partitions to find the
maximally-irreducible cause:

>>> mic = cut_subsystem.mic(ABC)
>>> mic.purview
(0, 1, 2)
>>> mic.phi
0.333333

It turns out that the MIP of the maximally-irreducible cause is

𝐴𝐵

∅
× 𝐶

𝐴𝐵𝐶

and the integrated information of mechanism 𝐴𝐵𝐶 is 𝜙 = 1/3.

Note that in order for a new concept to be created by a cut, there must be a within-mechanism connection severed by
the cut.

In the previous example, the MIP created a new concept, but the amount of𝜙 in the cause-effect structure still decreased.
This is not always the case. Next we will look at an example of system whoes MIP increases the amount of 𝜙. This
example is based on a five-node network that implements the logic of the Rule 154 cellular automaton. Let’s first load
the network:

>>> network = pyphi.examples.rule154_network()
>>> state = (1, 0, 0, 0, 0)

For this example, it is the subsystem consisting of 𝐴, 𝐵, and 𝐸 that we explore. This is not the major complex of the
system, but it serves as a proof of principle regardless.

>>> subsystem = pyphi.Subsystem(network, state, (0, 1, 4))

34 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Calculating the MIP of the system,

>>> sia = pyphi.compute.sia(subsystem)
>>> sia.phi
0.217829
>>> sia.cut
Cut [A, E] / / [B]

we see that this subsystem has a Φ value of 0.15533, and the MIP cuts the connections from 𝐴𝐸 to 𝐵. Investigating
the concepts in both the partitioned and unpartitioned cause-effect structures,

>>> sia.ces.labeled_mechanisms
(['A'], ['B'], ['A', 'B'])
>>> sia.ces.phis
[0.25, 0.166667, 0.178572]
>>> print(sum(_))
0.5952390000000001

We see that the unpartitioned cause-effect structure has mechanisms 𝐴, 𝐵 and 𝐴𝐵 with
∑︀

𝜙 = 0.595239.

>>> sia.partitioned_ces.labeled_mechanisms
(['A'], ['B'], ['A', 'B'])
>>> sia.partitioned_ces.phis
[0.25, 0.166667, 0.214286]
>>> print(sum(_))
0.630953

The partitioned cause-effect structure has mechanisms 𝐴, 𝐵 and 𝐴𝐵 but with
∑︀

𝜙 = 0.630953. There are the same
number of concepts in both cause-effect structures, over the same mechanisms; however, the partitioned cause-effect
structure has a greater 𝜙 value for the concept 𝐴𝐵, resulting in an overall greater

∑︀
𝜙 for the partitioned cause-effect

structure.

Although situations described above are rare, they do occur, so one must be careful when analyzing the integrated
information of physical systems not to dismiss the possibility of partitions creating new concepts or increasing the
amount of 𝜙; otherwise, an incorrect major complex may be identified.

1.11 Detailed installation guide for macOS

This is a step-by-step guide intended for those unfamiliar with Python or the command-line (a.k.a. the “shell”).

A shell can be opened by opening a new tab in the Terminal app (located in Utilities). Text that is formatted like
code is meant to be copied and pasted into the terminal (hit the Enter key to run the command).

The fist step is to install the versions of Python that we need. The most convenient way of doing this is to use the OS
X package manager Homebrew. Install Homebrew by running this command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
→˓install)"

Now you should have access to the brew command. First, we need to install Python 2 and 3. Using these so-called
“brewed” Python versions, rather than the version of Python that comes with your computer, will protect your com-
puter’s Python version from unwanted changes that could interfere with other applications.

brew install python python3

1.11. Detailed installation guide for macOS 35

http://brew.sh/

PyPhi Documentation, Release v1.2.1

Then we need to ensure that the terminal “knows about” the newly-installed Python versions:

brew link --overwrite python
brew link --overwrite python3

Now that we’re using our shiny new Python versions, it is highly recommended to set up a virtual environment in
which to install PyPhi. Virtual environments allow different projects to isolate their dependencies from one another,
so that they don’t interact in unexpected ways. Please see this guide for more information.

To do this, you must install virtualenvwrapper, a tool for manipulating virtual environments. This tool is available
on PyPI, the Python package index, and can be installed with pip, the command-line utility for installing and managing
Python packages (pip was installed automatically with the brewed Python):

pip install virtualenvwrapper

Now we need to edit your shell startup file. This is a file that runs automatically every time you open a new shell (a
new window or tab in the Terminal app). This file should be in your home directory, though it will be invisible in the
Finder because the filename is preceded by a period. On most Macs it is called .bash_profile. You can open this in
a text editor by running this command:

open -a TextEdit ~/.bash_profile

If you get an error that says the file doesn’t exist, then run touch ~/.bash_profile first to create it.

Now, you’ll add three lines to the shell startup file. These lines will set the location where the virtual environments
will live, the location of your development project directories, and the location of the script installed with this package,
respectively. Note: The location of the script can be found by running which virtualenvwrapper.sh.

The filepath after the equals sign on the second line will different for everyone, but here is an example:

export WORKON_HOME=$HOME/.virtualenvs
export PROJECT_HOME=$HOME/dev
source /usr/local/bin/virtualenvwrapper.sh

After editing the startup file and saving it, open a new terminal shell by opening a new tab or window (or just reload
the startup file by running source ~/.bash_profile).

Now that virtualenvwrapper is fully installed, use it to create a Python 3 virtual environment, like so:

mkvirtualenv -p `which python3` <name_of_your_project>

The option -p `which python3` ensures that when the virtual environment is activated, the commands python and
pip will refer to their Python 3 counterparts.

The virtual environment should have been activated automatically after creating it. Virtual environments can be man-
ually activated with workon <name_of_your_project>, and deactivated with deactivate.

Important: Remember to activate the virtual environment with the workon command every time you begin working
on your project. Also, note that the currently active virtual environment is not associated with any particular folder; it
is associated with a terminal shell. In other words, each time you open a new Terminal tab or terminal window, you need
to run workon <name_of_your_project (with some extra setup, this can be done automatically; see here). When a
virtual environment is active, your command-line prompt will be prepended with the name of the virtual environment
in parentheses.

Once you’ve checked that the new virtual environment is active, you’re finally ready to install PyPhi into it (note that
this may take a few minutes):

pip install pyphi

36 Chapter 1. Installation

http://docs.python-guide.org/dev/virtualenvs/
http://virtualenvwrapper.readthedocs.org/
https://pypi.python.org/pypi
https://virtualenvwrapper.readthedocs.io/page/tips.html#automatically-run-workon-when-entering-a-directory

PyPhi Documentation, Release v1.2.1

Congratulations, you’ve just installed PyPhi!

To play around with the software, ensure that you’ve activated the virtual environment with workon
<name_of_your_project>. Then run python to start a Python 3 interpreter. Then, in the interpreter’s command-line
(which is preceded by the >>> prompt), run

import pyphi

Optionally, you can also install IPython with pip install ipython to get a more useful Python interpreter that offers
things like tab-completion. Once you’ve installed it, you can start the IPython interpreter with the command ipython.

Next, please see the documentation for some examples of how to use PyPhi and information on how to configure it.

1.12 Transition probability matrix conventions

A Network can be created with a transition probability matrix (TPM) in any of the three forms described below.
However, in PyPhi the canonical TPM representation is multidimensional state-by-node form. The TPM will be
converted to this form when the Network is built.

Tip: Functions for converting TPMs from one form to another are available in the convert module.

1.12.1 State-by-node form

A TPM in state-by-node form is a matrix where the entry (𝑖, 𝑗) gives the probability that the 𝑗th node will be ON at
time 𝑡 + 1 if the system is in the 𝑖th state at time 𝑡.

1.12.2 Multidimensional state-by-node form

A TPM in multidimensional state-by-node form is a state-by-node form that has been reshaped so that it has 𝑛 + 1
dimensions instead of two. The first 𝑛 dimensions correspond to each of the 𝑛 nodes at time 𝑡, while the last dimension
corresponds to the probabilities of each node being ON at 𝑡 + 1.

With this form, we can take advantage of NumPy array indexing and use a network state as an index directly:

>>> from pyphi.examples import basic_noisy_selfloop_network
>>> tpm = basic_noisy_selfloop_network().tpm
>>> state = (0, 0, 1) # A network state is a binary tuple
>>> tpm[state]
array([0.919, 0.91 , 0.756])

This tells us that if the current state is 𝑁0 = 0, 𝑁1 = 0, 𝑁2 = 1, then the for the next state, Pr(𝑁0 = 1) = 0.919,
Pr(𝑁1 = 1) = 0.91 and Pr(𝑁2 = 1) = 0.756.

Important: The multidimensional state-by-node form is used throughout PyPhi, regardless of the form that was used
to create the Network .

1.12. Transition probability matrix conventions 37

https://ipython.org/
https://pyphi.readthedocs.io/page/examples/
https://pyphi.readthedocs.io/page/configuration.html
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

PyPhi Documentation, Release v1.2.1

1.12.3 State-by-state form

A TPM in state-by-state form is a matrix where the entry (𝑖, 𝑗) gives the probability that the state at time 𝑡 + 1 will
be 𝑗 if the state at time 𝑡 is labeled by 𝑖.

Warning: When converting a state-by-state TPM to one of the other forms, information may be lost!
This is because the space of possible state-by-state TPMs is larger than the space of state-by-node TPMs (so the con-
version cannot be injective). However, if we restrict the state-by-state TPMs to only those that satisfy the conditional
independence property, then the mapping becomes bijective.

See Conditional Independence for a more detailed discussion.

1.12.4 Little-endian convention

Even after choosing one of the above representations, there are several ways to write down the TPM.

With both state-by-state and state-by-node TPMs, one is confronted with a choice about which rows correspond to
which states. In state-by-state TPMs, this choice must also be made for the columns.

There are two possible choices for the rows. Either the first node changes state every other row:

State at 𝑡 Pr(𝑁 = 𝑂𝑁) at 𝑡 + 1
A, B A B
(0, 0) 0.1 0.2
(1, 0) 0.3 0.4
(0, 1) 0.5 0.6
(1, 1) 0.7 0.8

Or the last node does:

State at 𝑡 Pr(𝑁 = 𝑂𝑁) at 𝑡 + 1
A, B A B
(0, 0) 0.1 0.2
(0, 1) 0.5 0.6
(1, 0) 0.3 0.4
(1, 1) 0.7 0.8

Note that the index 𝑖 of a row in a TPM encodes a network state: convert the index to binary, and each bit gives the
state of a node. The question is, which node?

Throughout PyPhi, we always choose the first convention—the state of the first node (the one with the lowest
index) varies the fastest. So, the least-signficant bit—the one’s place—gives the state of the lowest-index node.

This is analogous to the little-endian convention in organizing computer memory. The other convention, where the
highest-index node varies the fastest, is analogous to the big-endian convention (see Endianness).

The rationale for this choice of convention is that the little-endian mapping is stable under changes in the number of
nodes, in the sense that the same bit always corresponds to the same node index. The big-endian mapping does not
have this property.

Tip: Functions to convert states to indices and vice versa, according to either the little-endian or big-endian convention,
are available in the convert module.

38 Chapter 1. Installation

https://en.wikipedia.org/wiki/Endianness

PyPhi Documentation, Release v1.2.1

Note: This applies to only situations where decimal indices are encoding states. Whenever a network state is repre-
sented as a list or tuple, we use the only sensible convention: the 𝑖th element gives the state of the 𝑖th node.

1.13 Connectivity matrix conventions

Throughout PyPhi, if 𝐶𝑀 is a connectivity matrix, then [𝐶𝑀]𝑖,𝑗 = 1 means that there is a directed edge (𝑖, 𝑗) from
node 𝑖 to node 𝑗, and [𝐶𝑀]𝑖,𝑗 = 0 means there is no edge from 𝑖 to 𝑗.

For example, this network of four nodes

has the following connectivity matrix:

>>> cm = [[0, 0, 1, 0],
... [1, 0, 1, 0],
... [0, 1, 0, 1],
... [0, 0, 0, 1]]

1.14 Loading a configuration

Various aspects of PyPhi’s behavior can be configured.

When PyPhi is imported, it checks for a YAML file named pyphi_config.yml in the current directory and automat-
ically loads it if it exists; otherwise the default configuration is used.

The various settings are listed here with their defaults.

>>> import pyphi
>>> defaults = pyphi.config.defaults()

Print the config object to see the current settings:

>>> print(pyphi.config)
{ 'ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS': False,
'CACHE_SIAS': False,
'CACHE_POTENTIAL_PURVIEWS': True,

(continues on next page)

1.13. Connectivity matrix conventions 39

PyPhi Documentation, Release v1.2.1

(continued from previous page)

'CACHING_BACKEND': 'fs',
...

Setting can be changed on the fly by assigning them a new value:

>>> pyphi.config.PROGRESS_BARS = False

It is also possible to manually load a configuration file:

>>> pyphi.config.load_file('pyphi_config.yml')

Or load a dictionary of configuration values:

>>> pyphi.config.load_dict({'PRECISION': 1})

1.15 Approximations and theoretical options

These settings control the algorithms PyPhi uses.

• ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS

• CUT_ONE_APPROXIMATION

• MEASURE

• PARTITION_TYPE

• PICK_SMALLEST_PURVIEW

• USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE

• SYSTEM_CUTS

• SINGLE_MICRO_NODES_WITH_SELFLOOPS_HAVE_PHI

• VALIDATE_SUBSYSTEM_STATES

• VALIDATE_CONDITIONAL_INDEPENDENCE

1.16 Parallelization and system resources

These settings control how much processing power and memory is available for PyPhi to use. The default values may
not be appropriate for your use-case or machine, so please check these settings before running anything. Otherwise,
there is a risk that simulations might crash (potentially after running for a long time!), resulting in data loss.

• PARALLEL_CONCEPT_EVALUATION

• PARALLEL_CUT_EVALUATION

• PARALLEL_COMPLEX_EVALUATION

• NUMBER_OF_CORES

• MAXIMUM_CACHE_MEMORY_PERCENTAGE

Important: Only one of PARALLEL_CONCEPT_EVALUATION, PARALLEL_CUT_EVALUATION, and
PARALLEL_COMPLEX_EVALUATION can be set to True at a time.

40 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

For most networks, PARALLEL_CUT_EVALUATION is the most efficient. This is because the algorithm is expo-
nential time in the number of nodes, so the most of the time is spent on the largest subsystem.

You should only parallelize concept evaluation if you are just computing a CauseEffectStructure.

1.17 Memoization and caching

PyPhi provides a number of ways to cache intermediate results.

• CACHE_SIAS

• CACHE_REPERTOIRES

• CACHE_POTENTIAL_PURVIEWS

• CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA

• CACHING_BACKEND

• FS_CACHE_VERBOSITY

• FS_CACHE_DIRECTORY

• MONGODB_CONFIG

• REDIS_CACHE

• REDIS_CONFIG

1.18 Logging

These settings control how PyPhi handles messages. Logs can be written to standard output, a file, both, or none. If
these simple default controls are not flexible enough for you, you can override the entire logging configuration. See the
documentation on Python’s logger for more information.

• WELCOME_OFF

• LOG_STDOUT_LEVEL

• LOG_FILE_LEVEL

• LOG_FILE

• PROGRESS_BARS

• REPR_VERBOSITY

• PRINT_FRACTIONS

1.17. Memoization and caching 41

https://docs.python.org/3.4/library/logging.html

PyPhi Documentation, Release v1.2.1

1.19 Numerical precision

• PRECISION

1.20 The config API

class pyphi.conf.Option(default, values=None, on_change=None, doc=None)
A descriptor implementing PyPhi configuration options.

Parameters default – The default value of this Option.

Keyword Arguments
• values (list) – Allowed values for this option. A ValueError will be raised if values

is not None and the option is set to be a value not in the list.

• on_change (function) – Optional callback that is called when the value of the option is
changed. The Config instance is passed as the only argument to the callback.

• doc (str) – Optional docstring for the option.

class pyphi.conf.ConfigMeta(cls_name, bases, namespace)
Metaclass for Config.

Responsible for setting the name of each Optionwhen a subclass of Config is created; because Option objects
are defined on the class, not the instance, their name should only be set once.

Python 3.6 handles this exact need with the special descriptor method __set_name__ (see PEP 487). We should
use that once we drop support for 3.4 & 3.5.

class pyphi.conf.Config
Base configuration object.

See PyphiConfig for usage.

classmethod options()
Return a dictionary of the Option objects for this config.

defaults()
Return the default values of this configuration.

load_dict(dct)
Load a dictionary of configuration values.

load_file(filename)
Load config from a YAML file.

snapshot()
Return a snapshot of the current values of this configuration.

override(**new_values)
Decorator and context manager to override configuration values.

The initial configuration values are reset after the decorated function returns or the context manager com-
pletes it block, even if the function or block raises an exception. This is intended to be used by tests which
require specific configuration values.

42 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Example

>>> from pyphi import config
>>> @config.override(PRECISION=20000)
... def test_something():
... assert config.PRECISION == 20000
...
>>> test_something()
>>> with config.override(PRECISION=100):
... assert config.PRECISION == 100
...

pyphi.conf.configure_logging(conf)
Reconfigure PyPhi logging based on the current configuration.

pyphi.conf.configure_joblib(conf)

pyphi.conf.configure_precision(conf)

class pyphi.conf.PyphiConfig
pyphi.config is an instance of this class.

ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS
default=False

In certain cases, making a cut can actually cause a previously reducible concept to become a proper, ir-
reducible concept. Assuming this can never happen can increase performance significantly, however the
obtained results are not strictly accurate.

CUT_ONE_APPROXIMATION
default=False

When determining the MIP for Φ, this restricts the set of system cuts that are considered to only those that
cut the inputs or outputs of a single node. This restricted set of cuts scales linearly with the size of the
system; the full set of all possible bipartitions scales exponentially. This approximation is more likely to
give theoretically accurate results with modular, sparsely-connected, or homogeneous networks.

MEASURE
default='EMD'

The measure to use when computing distances between repertoires and concepts. A full list of currently
installed measures is available by calling print(pyphi.distance.measures.all()). Note that some
measures cannot be used for calculating Φ because they are asymmetric.

Custom measures can be added using the pyphi.distance.measures.register decorator. For exam-
ple:

from pyphi.distance import measures

@measures.register('ALWAYS_ZERO')
def always_zero(a, b):

return 0

This measure can then be used by setting config.MEASURE = 'ALWAYS_ZERO'.

If the measure is asymmetric you should register it using the asymmetric keyword argument. See
distance for examples.

PARALLEL_CONCEPT_EVALUATION
default=False

1.20. The config API 43

PyPhi Documentation, Release v1.2.1

Controls whether concepts are evaluated in parallel when computing cause-effect structures.

PARALLEL_CUT_EVALUATION
default=True

Controls whether system cuts are evaluated in parallel, which is faster but requires more memory. If cuts
are evaluated sequentially, only two SystemIrreducibilityAnalysis instances need to be in memory
at once.

PARALLEL_COMPLEX_EVALUATION
default=False

Controls whether systems are evaluated in parallel when computing complexes.

NUMBER_OF_CORES
default=-1

Controls the number of CPU cores used to evaluate unidirectional cuts. Negative numbers count backwards
from the total number of available cores, with -1 meaning ‘use all available cores.’

MAXIMUM_CACHE_MEMORY_PERCENTAGE
default=50

PyPhi employs several in-memory caches to speed up computation. However, these can quickly use a lot of
memory for large networks or large numbers of them; to avoid thrashing, this setting limits the percentage
of a system’s RAM that the caches can collectively use.

CACHE_SIAS
default=False

PyPhi is equipped with a transparent caching system for SystemIrreducibilityAnalysis objects which
stores them as they are computed to avoid having to recompute them later. This makes it easy to play around
interactively with the program, or to accumulate results with minimal effort. For larger projects, however,
it is recommended that you manage the results explicitly, rather than relying on the cache. For this reason
it is disabled by default.

CACHE_REPERTOIRES
default=True

PyPhi caches cause and effect repertoires. This greatly improves speed, but can consume a significant
amount of memory. If you are experiencing memory issues, try disabling this.

CACHE_POTENTIAL_PURVIEWS
default=True

Controls whether the potential purviews of mechanisms of a network are cached. Caching speeds up com-
putations by not recomputing expensive reducibility checks, but uses additional memory.

CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA
default=False

Controls whether a Subsystem’s repertoire and MICE caches are cleared with clear_caches() after
computing the SystemIrreducibilityAnalysis. If you don’t need to do any more computations after
running sia(), then enabling this may help conserve memory.

CACHING_BACKEND
default='fs'

Controls whether precomputed results are stored and read from a local filesystem-based cache in the current
directory or from a database. Set this to 'fs' for the filesystem, 'db' for the database.

FS_CACHE_VERBOSITY
default=0, on_change=configure_joblib

44 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Controls how much caching information is printed if the filesystem cache is used. Takes a value between 0
and 11.

FS_CACHE_DIRECTORY
default='__pyphi_cache__', on_change=configure_joblib

If the filesystem is used for caching, the cache will be stored in this directory. This directory can be copied
and moved around if you want to reuse results e.g. on a another computer, but it must be in the same
directory from which Python is being run.

MONGODB_CONFIG
27017, ‘database_name’: ‘pyphi’, ‘collection_name’: ‘cache’}``

Set the configuration for the MongoDB database backend (only has an effect if CACHING_BACKEND is 'db').

Type ``default={‘host’

Type ‘localhost’, ‘port’

REDIS_CACHE
default=False

Specifies whether to use Redis to cache MaximallyIrreducibleCauseOrEffect.

REDIS_CONFIG
6379, ‘db’: 0, ‘test_db’: 1}``

Configure the Redis database backend. These are the defaults in the provided redis.conf file.

Type ``default={‘host’

Type ‘localhost’, ‘port’

WELCOME_OFF
default=False

Specifies whether to suppress the welcome message when PyPhi is imported.

Alternatively, you may suppress the message by setting the environment variable PYPHI_WELCOME_OFF to
any value in your shell:

export PYPHI_WELCOME_OFF='yes'

The message will not print if either this option is True or the environment variable is set.

LOG_FILE
default='pyphi.log', on_change=configure_logging

Controls the name of the log file.

LOG_FILE_LEVEL
default='INFO', on_change=configure_logging

Controls the level of log messages written to the log file. This setting has the same possible values as
LOG_STDOUT_LEVEL.

LOG_STDOUT_LEVEL
default='WARNING', on_change=configure_logging

Controls the level of log messages written to standard output. Can be one of 'DEBUG', 'INFO', 'WARNING',
'ERROR', 'CRITICAL', or None. 'DEBUG' is the least restrictive level and will show the most log messages.
'CRITICAL' is the most restrictive level and will only display information about fatal errors. If set to None,
logging to standard output will be disabled entirely.

1.20. The config API 45

PyPhi Documentation, Release v1.2.1

PROGRESS_BARS
default=True

Controls whether to show progress bars on the console.

Tip: If you are iterating over many systems rather than doing one long-running calculation,
consider disabling this for speed.

PRECISION
default=6, on_change=configure_precision

If MEASURE is EMD, then the Earth Mover’s Distance is calculated with an external C++ library that a numer-
ical optimizer to find a good approximation. Consequently, systems with analytically zero Φ will sometimes
be numerically found to have a small but non-zero amount. This setting controls the number of decimal
places to which PyPhi will consider EMD calculations accurate. Values of Φ lower than 10e-PRECISION
will be considered insignificant and treated as zero. The default value is about as accurate as the EMD
computations get.

VALIDATE_SUBSYSTEM_STATES
default=True

Controls whether PyPhi checks if the subsystems’s state is possible (reachable with nonzero probability
from some previous state), given the subsystem’s TPM (which is conditioned on background conditions).
If this is turned off, then calculated Φ values may not be valid, since they may be associated with a
subsystem that could never be in the given state.

VALIDATE_CONDITIONAL_INDEPENDENCE
default=True

Controls whether PyPhi checks if a system’s TPM is conditionally independent.

SINGLE_MICRO_NODES_WITH_SELFLOOPS_HAVE_PHI
default=False

If set to True, the Φ value of single micro-node subsystems is the difference between their unpartitioned
CauseEffectStructure (a single concept) and the null concept. If set to False, their Φ is defined to be
zero. Single macro-node subsystems may always be cut, regardless of circumstances.

REPR_VERBOSITY
default=2, values=[0, 1, 2]

Controls the verbosity of __repr__ methods on PyPhi objects. Can be set to 0, 1, or 2. If set to 1, calling
repr on PyPhi objects will return pretty-formatted and legible strings, excluding repertoires. If set to 2,
repr calls also include repertoires.

Although this breaks the convention that __repr__ methods should return a representation which can re-
construct the object, readable representations are convenient since the Python REPL calls repr to represent
all objects in the shell and PyPhi is often used interactively with the REPL. If set to 0, repr returns more
traditional object representations.

PRINT_FRACTIONS
default=True

Controls whether numbers in a repr are printed as fractions. Numbers are still printed as decimals if the
fraction’s denominator would be large. This only has an effect if REPR_VERBOSITY > 0.

PARTITION_TYPE
default='BI'

Controls the type of partition used for 𝜙 computations.

46 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

If set to 'BI', partitions will have two parts.

If set to 'TRI', partitions will have three parts. In addition, computations will only consider partitions that
strictly partition the mechanism. That is, for the mechanism (A, B) and purview (B, C, D) the partition:

A,B
×

B C,D

is not considered, but:

A B
×

B C,D

is. The following is also valid:

A,B
×
B,C,D

In addition, this setting introduces “wedge” tripartitions of the form:

A B
× ×

B C D

where the mechanism in the third part is always empty.

Finally, if set to 'ALL', all possible partitions will be tested.

You can experiment with custom partitioning strategies using the pyphi.partition.
partition_types.register decorator. For example:

from pyphi.models import KPartition, Part
from pyphi.partition import partition_types

@partition_types.register('SINGLE_NODE')
def single_node_partitions(mechanism, purview, node_labels=None):
for element in mechanism:

element = tuple([element])
others = tuple(sorted(set(mechanism) - set(element)))

part1 = Part(mechanism=element, purview=())
part2 = Part(mechanism=others, purview=purview)

yield KPartition(part1, part2, node_labels=node_labels)

This generates the set of partitions that cut connections between a single mechanism element and the entire
purview. The mechanism and purview of each Part remain undivided - only connections between parts
are severed.

You can use this new partititioning scheme by setting config.PARTITION_TYPE = 'SINGLE_NODE'.

See partition for more examples.

PICK_SMALLEST_PURVIEW
default=False

1.20. The config API 47

PyPhi Documentation, Release v1.2.1

When computing a MaximallyIrreducibleCause or MaximallyIrreducibleEffect, it is possible
for several MIPs to have the same 𝜙 value. If this setting is set to True the MIP with the smallest purview
is chosen; otherwise, the one with largest purview is chosen.

USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE
default=False

If set to True, the distance between cause-effect structures (when computing a
SystemIrreducibilityAnalysis) is calculated using the difference between the sum of 𝜙 in the
cause-effect structures instead of the extended EMD.

SYSTEM_CUTS
default='3.0_STYLE', values=['3.0_STYLE', 'CONCEPT_STYLE']

If set to '3.0_STYLE', then traditional IIT 3.0 cuts will be used when computing Φ. If set to
'CONCEPT_STYLE', then experimental concept-style system cuts will be used instead.

log()
Log current settings.

1.21 Caching

PyPhi can optionally store the results of calculations as they’re computed in order to avoid expensive re-computation.
These results can be stored locally on the filesystem (the default setting), or in a full-fledged database.

Caching is configured either in the pyphi_config.yml file or at runtime by modifying pyphi.config. See the
configuration documentation for more information.

1.21.1 Caching with MongoDb

Using the default caching system is easier and works out of the box, but using a database is more robust.

To use the database-backed caching system, you must install MongoDB. Please see their installation guide for instruc-
tions.

Once you have MongoDB installed, use mongod to start the MongoDB server. Make sure the mongod configuration
matches the PyPhi’s database configuration settings in pyphi_config.yml (see the configuration section of PyPhi’s
documentation).

You can also check out MongoDB’s Getting Started guide or the full manual.

1.21.2 Caching with Redis

PyPhi can also use Redis as a fast in-memory global LRU cache to store Mice objects, reducing the memory load on
PyPhi processes.

Install Redis. The redis.conf file provided with PyPhi includes the minimum settings needed to run Redis as an LRU
cache:

redis-server /path/to/pyphi/redis.conf

Once the server is running you can enable Redis caching by setting REDIS_CACHE: true in your pyphi_config.yml.

Note: PyPhi currently flushes the connected Redis database at the start of every execution. If you are running Redis
for another application be sure PyPhi connects to its own Redis server.

48 Chapter 1. Installation

http://pyphi.readthedocs.io/en/stable/configuration.html
http://www.mongodb.org/
http://docs.mongodb.org/manual/installation/
https://pythonhosted.org/pyphi/index.html#configuration
http://docs.mongodb.org/manual/tutorial/getting-started/
http://docs.mongodb.org/manual/
http://redis.io/download

PyPhi Documentation, Release v1.2.1

1.22 actual

Methods for computing actual causation of subsystems and mechanisms.

If you use this module, please cite the following papers:

Albantakis L, Marshall W, Hoel E, Tononi G (2019). What Caused What? A quantitative Account of
Actual Causation Using Dynamical Causal Networks. Entropy, 21 (5), pp. 459. https://doi.org/10.3390/
e21050459

Mayner WGP, Marshall W, Albantakis L, Findlay G, Marchman R, Tononi G. (2018). PyPhi: A toolbox for
integrated information theory. PLOS Computational Biology 14(7): e1006343. https://doi.org/10.1371/
journal.pcbi.1006343

pyphi.actual.log2(x)
Rounded version of log2.

class pyphi.actual.Transition(network, before_state, after_state, cause_indices, effect_indices, cut=None,
noise_background=False)

A state transition between two sets of nodes in a network.

A Transition is implemented with two Subsystem objects: one representing the system at time 𝑡 − 1 used
to compute effect coefficients, and another representing the system at time 𝑡 which is used to compute cause
coefficients. These subsystems are accessed with the effect_system and cause_system attributes, and are
mapped to the causal directions via the system attribute.

Parameters
• network (Network) – The network the subsystem belongs to.

• before_state (tuple[int]) – The state of the network at time 𝑡− 1.

• after_state (tuple[int]) – The state of the network at time 𝑡.

• cause_indices (tuple[int] or tuple[str]) – Indices of nodes in the cause system.
(TODO: clarify)

• effect_indices (tuple[int] or tuple[str]) – Indices of nodes in the effect system.
(TODO: clarify)

Keyword Arguments noise_background (bool) – If True, background conditions are noised in-
stead of frozen.

node_indices
The indices of the nodes in the system.

Type tuple[int]

network
The network the system belongs to.

Type Network

before_state
The state of the network at time 𝑡− 1.

Type tuple[int]

after_state
The state of the network at time 𝑡.

Type tuple[int]

1.22. actual 49

https://doi.org/10.3390/e21050459
https://doi.org/10.3390/e21050459
https://doi.org/10.1371/journal.pcbi.1006343
https://doi.org/10.1371/journal.pcbi.1006343

PyPhi Documentation, Release v1.2.1

effect_system
The system in before_state used to compute effect repertoires and coefficients.

Type Subsystem

cause_system
The system in after_state used to compute cause repertoires and coefficients.

Type Subsystem

cause_system

Type Subsystem

system
A dictionary mapping causal directions to the system used to compute repertoires in that direction.

Type dict

cut
The cut that has been applied to this transition.

Type ActualCut

Note: During initialization, both the cause and effect systems are conditioned on before_state as the back-
ground state. After conditioning the effect_system is then properly reset to after_state.

property node_labels

to_json()
Return a JSON-serializable representation.

apply_cut(cut)
Return a cut version of this transition.

cause_repertoire(mechanism, purview)
Return the cause repertoire.

effect_repertoire(mechanism, purview)
Return the effect repertoire.

unconstrained_cause_repertoire(purview)
Return the unconstrained cause repertoire of the occurence.

unconstrained_effect_repertoire(purview)
Return the unconstrained effect repertoire of the occurence.

repertoire(direction, mechanism, purview)
Return the cause or effect repertoire function based on a direction.

Parameters direction (str) – The temporal direction, specifiying the cause or effect reper-
toire.

state_probability(direction, repertoire, purview)
Compute the probability of the purview in its current state given the repertoire.

Collapses the dimensions of the repertoire that correspond to the purview nodes onto their state. All other
dimension are already singular and thus receive 0 as the conditioning index.

Returns A single probabilty.

Return type float

50 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

probability(direction, mechanism, purview)
Probability that the purview is in it’s current state given the state of the mechanism.

unconstrained_probability(direction, purview)
Unconstrained probability of the purview.

purview_state(direction)
The state of the purview when we are computing coefficients in direction.

For example, if we are computing the cause coefficient of a mechanism in after_state, the direction
is``CAUSE`` and the purview_state is before_state.

mechanism_state(direction)
The state of the mechanism when computing coefficients in direction.

mechanism_indices(direction)
The indices of nodes in the mechanism system.

purview_indices(direction)
The indices of nodes in the purview system.

cause_ratio(mechanism, purview)
The cause ratio of the purview given mechanism.

effect_ratio(mechanism, purview)
The effect ratio of the purview given mechanism.

partitioned_repertoire(direction, partition)
Compute the repertoire over the partition in the given direction.

partitioned_probability(direction, partition)
Compute the probability of the mechanism over the purview in the partition.

find_mip(direction, mechanism, purview, allow_neg=False)
Find the ratio minimum information partition for a mechanism over a purview.

Parameters
• direction (str) – CAUSE or EFFECT

• mechanism (tuple[int]) – A mechanism.

• purview (tuple[int]) – A purview.

Keyword Arguments allow_neg (boolean) – If true, alpha is allowed to be negative. Other-
wise, negative values of alpha will be treated as if they were 0.

Returns The irreducibility analysis for the mechanism.

Return type AcRepertoireIrreducibilityAnalysis

potential_purviews(direction, mechanism, purviews=False)
Return all purviews that could belong to the MaximallyIrreducibleCause/MaximallyIrreducibleEffect.

Filters out trivially-reducible purviews.

Parameters
• direction (str) – Either CAUSE or EFFECT.

• mechanism (tuple[int]) – The mechanism of interest.

Keyword Arguments purviews (tuple[int]) – Optional subset of purviews of interest.

find_causal_link(direction, mechanism, purviews=False, allow_neg=False)
Return the maximally irreducible cause or effect ratio for a mechanism.

1.22. actual 51

PyPhi Documentation, Release v1.2.1

Parameters
• direction (str) – The temporal direction, specifying cause or effect.

• mechanism (tuple[int]) – The mechanism to be tested for irreducibility.

Keyword Arguments purviews (tuple[int]) – Optionally restrict the possible purviews to a
subset of the subsystem. This may be useful for _e.g._ finding only concepts that are “about”
a certain subset of nodes.

Returns The maximally-irreducible actual cause or effect.

Return type CausalLink

find_actual_cause(mechanism, purviews=False)
Return the actual cause of a mechanism.

find_actual_effect(mechanism, purviews=False)
Return the actual effect of a mechanism.

find_mice(*args, **kwargs)
Backwards-compatible alias for find_causal_link().

pyphi.actual.directed_account(transition, direction, mechanisms=False, purviews=False, allow_neg=False)
Return the set of all CausalLink of the specified direction.

pyphi.actual.account(transition, direction=Direction.BIDIRECTIONAL)
Return the set of all causal links for a Transition.

Parameters transition (Transition) – The transition of interest.

Keyword Arguments direction (Direction) – By default the account contains actual causes and
actual effects.

pyphi.actual.account_distance(A1, A2)
Return the distance between two accounts. Here that is just the difference in sum(alpha)

Parameters
• A1 (Account) – The first account.

• A2 (Account) – The second account

Returns The distance between the two accounts.

Return type float

pyphi.actual.sia(transition, direction=Direction.BIDIRECTIONAL)
Return the minimal information partition of a transition in a specific direction.

Parameters transition (Transition) – The candidate system.

Returns A nested structure containing all the data from the intermediate calculations. The top level
contains the basic irreducibility information for the given subsystem.

Return type AcSystemIrreducibilityAnalysis

class pyphi.actual.ComputeACSystemIrreducibility(iterable, *context)
Computation engine for AC SIAs.

description = 'Evaluating AC cuts'

empty_result(transition, direction, unpartitioned_account)
Return the default result with which to begin the computation.

static compute(cut, transition, direction, unpartitioned_account)
Map over a single object from self.iterable.

52 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

process_result(new_sia, min_sia)
Reduce handler.

Every time a new result is generated by compute, this method is called with the result and the previous
(accumulated) result. This method compares or collates these two values, returning the new result.

Setting self.done to True in this method will abort the remainder of the computation, returning this final
result.

pyphi.actual.transitions(network, before_state, after_state)
Return a generator of all possible transitions of a network.

pyphi.actual.nexus(network, before_state, after_state, direction=Direction.BIDIRECTIONAL)
Return a tuple of all irreducible nexus of the network.

pyphi.actual.causal_nexus(network, before_state, after_state, direction=Direction.BIDIRECTIONAL)
Return the causal nexus of the network.

pyphi.actual.nice_true_ces(tc)
Format a true CauseEffectStructure.

pyphi.actual.events(network, previous_state, current_state, next_state, nodes, mechanisms=False)
Find all events (mechanisms with actual causes and actual effects).

pyphi.actual.true_ces(subsystem, previous_state, next_state)
Set of all sets of elements that have true causes and true effects.

Note: Since the true CauseEffectStructure is always about the full system, the background conditions don’t
matter and the subsystem should be conditioned on the current state.

pyphi.actual.true_events(network, previous_state, current_state, next_state, indices=None,
major_complex=None)

Return all mechanisms that have true causes and true effects within the complex.

Parameters
• network (Network) – The network to analyze.

• previous_state (tuple[int]) – The state of the network at t - 1.

• current_state (tuple[int]) – The state of the network at t.

• next_state (tuple[int]) – The state of the network at t + 1.

Keyword Arguments
• indices (tuple[int]) – The indices of the major complex.

• major_complex (AcSystemIrreducibilityAnalysis) – The major complex. If
major_complex is given then indices is ignored.

Returns List of true events in the major complex.

Return type tuple[Event]

pyphi.actual.extrinsic_events(network, previous_state, current_state, next_state, indices=None,
major_complex=None)

Set of all mechanisms that are in the major complex but which have true causes and effects within the entire
network.

Parameters
• network (Network) – The network to analyze.

1.22. actual 53

PyPhi Documentation, Release v1.2.1

• previous_state (tuple[int]) – The state of the network at t - 1.

• current_state (tuple[int]) – The state of the network at t.

• next_state (tuple[int]) – The state of the network at t + 1.

Keyword Arguments
• indices (tuple[int]) – The indices of the major complex.

• major_complex (AcSystemIrreducibilityAnalysis) – The major complex. If
major_complex is given then indices is ignored.

Returns List of extrinsic events in the major complex.

Return type tuple(actions)

1.23 cache

Memoization and caching utilities.

pyphi.cache.memory_full()
Check if the memory is too full for further caching.

pyphi.cache.cache(cache={}, maxmem=50, typed=False)
Memory-limited cache decorator.

maxmem is a float between 0 and 100, inclusive, specifying the maximum percentage of physical memory that the
cache can use.

If typed is True, arguments of different types will be cached separately. For example, f(3.0) and f(3) will be
treated as distinct calls with distinct results.

Arguments to the cached function must be hashable.

View the cache statistics named tuple (hits, misses, currsize) with f.cache_info(). Clear the cache and statistics
with f.cache_clear(). Access the underlying function with f.__wrapped__.

class pyphi.cache.DictCache
A generic dictionary-based cache.

Intended to be used as an object-level cache of method results.

clear()

size()
Number of items in cache

info()
Return info about cache hits, misses, and size

get(key)
Get a value out of the cache.

Returns None if the key is not in the cache. Updates cache statistics.

set(key, value)
Set a value in the cache

key(*args, _prefix=None, **kwargs)
Get the cache key for the given function args.

Kwargs: prefix: A constant to prefix to the key.

54 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

pyphi.cache.redis_init(db)

pyphi.cache.redis_available()
Check if the Redis server is connected.

class pyphi.cache.RedisCache

clear()
Flush the cache.

static size()
Size of the Redis cache.

Note: This is the size of the entire Redis database.

info()
Return cache information.

Note: This is not the cache info for the entire Redis key space.

get(key)
Get a value from the cache.

Returns None if the key is not in the cache.

set(key, value)
Set a value in the cache.

key()
Delegate to subclasses.

pyphi.cache.validate_parent_cache(parent_cache)

class pyphi.cache.RedisMICECache(subsystem, parent_cache=None)
A Redis-backed cache for find_mice().

See MICECache for more info.

get(key)
Get a value from the cache.

If the MaximallyIrreducibleCauseOrEffect cannot be found in this cache, try and find it in the parent
cache.

set(key, value)
Only need to set if the subsystem is uncut.

Caches are only inherited from uncut subsystems.

key(direction, mechanism, purviews=False, _prefix=None)
Cache key. This is the call signature of find_mice().

class pyphi.cache.DictMICECache(subsystem, parent_cache=None)
A subsystem-local cache for MaximallyIrreducibleCauseOrEffect objects.

See MICECache for more info.

set(key, mice)
Set a value in the cache.

1.23. cache 55

PyPhi Documentation, Release v1.2.1

Only cache if:
• The subsystem is uncut (caches are only inherited from uncut subsystems so there is no reason to

cache on cut subsystems.)

• 𝜙 > 0. Ideally we would cache all mice, but the size of the cache grows way too large, making
parallel computations incredibly inefficient because the caches have to be passed between process.
This will be changed once global caches are implemented.

• Memory is not too full.

key(direction, mechanism, purviews=False, _prefix=None)
Cache key. This is the call signature of find_mice().

pyphi.cache.MICECache(subsystem, parent_cache=None)
Construct a MaximallyIrreducibleCauseOrEffect cache.

Uses either a Redis-backed cache or a local dict cache on the object.

Parameters subsystem (Subsystem) – The subsystem that this is a cache for.

Kwargs:
parent_cache (MICECache): The cache generated by the uncut version of subsystem. Any cached
MaximallyIrreducibleCauseOrEffect which are unaffected by the cut are reused in this cache.
If None, the cache is initialized empty.

class pyphi.cache.PurviewCache
A network-level cache for possible purviews.

set(key, value)
Only set if purview caching is enabled

pyphi.cache.method(cache_name, key_prefix=None)
Caching decorator for object-level method caches.

Cache key generation is delegated to the cache.

Parameters
• cache_name (str) – The name of the (already-instantiated) cache on the decorated object

which should be used to store results of this method.

• *key_prefix – A constant to use as part of the cache key in addition to the method argu-
ments.

1.24 compute

See pyphi.compute.subsystem , pyphi.compute.network , pyphi.compute.distance, and pyphi.compute.
parallel for documentation.

pyphi.compute.all_complexes
Alias for pyphi.compute.network.all_complexes().

pyphi.compute.ces
Alias for pyphi.compute.subsystem.ces().

pyphi.compute.ces_distance
Alias for pyphi.compute.distance.ces_distance().

56 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

pyphi.compute.complexes
Alias for pyphi.compute.network.complexes().

pyphi.compute.concept_distance
Alias for pyphi.compute.distance.concept_distance().

pyphi.compute.conceptual_info
Alias for pyphi.compute.subsystem.conceptual_info().

pyphi.compute.condensed
Alias for pyphi.compute.network.condensed().

pyphi.compute.evaluate_cut
Alias for pyphi.compute.subsystem.evaluate_cut().

pyphi.compute.major_complex
Alias for pyphi.compute.network.major_complex().

pyphi.compute.phi
Alias for pyphi.compute.subsystem.phi().

pyphi.compute.possible_complexes
Alias for pyphi.compute.network.possible_complexes().

pyphi.compute.sia
Alias for pyphi.compute.subsystem.sia().

pyphi.compute.subsystems
Alias for pyphi.compute.network.subsystems().

1.25 compute.distance

Functions for computing distances between various PyPhi objects.

pyphi.compute.distance.concept_distance(c1, c2)
Return the distance between two concepts in concept space.

Parameters
• c1 (Concept) – The first concept.

• c2 (Concept) – The second concept.

Returns The distance between the two concepts in concept space.

Return type float

pyphi.compute.distance.ces_distance(C1, C2)
Return the distance between two cause-effect structures.

Parameters
• C1 (CauseEffectStructure) – The first CauseEffectStructure.

• C2 (CauseEffectStructure) – The second CauseEffectStructure.

Returns The distance between the two cause-effect structures in concept space.

Return type float

pyphi.compute.distance.small_phi_ces_distance(C1, C2)
Return the difference in 𝜙 between CauseEffectStructure.

1.25. compute.distance 57

PyPhi Documentation, Release v1.2.1

1.26 compute.network

Functions for computing network-level properties.

pyphi.compute.network.subsystems(network, state)
Return a generator of all possible subsystems of a network.

Note: Does not return subsystems that are in an impossible state (after conditioning the subsystem TPM on the
state of the other nodes).

Parameters
• network (Network) – The Network of interest.

• state (tuple[int]) – The state of the network (a binary tuple).

Yields Subsystem – A Subsystem for each subset of nodes in the network, excluding subsystems
that would be in an impossible state.

pyphi.compute.network.possible_complexes(network, state)
Return a generator of subsystems of a network that could be a complex.

This is the just powerset of the nodes that have at least one input and output (nodes with no inputs or no outputs
cannot be part of a main complex, because they do not have a causal link with the rest of the subsystem in the
previous or next timestep, respectively).

Note: Does not return subsystems that are in an impossible state (after conditioning the subsystem TPM on the
state of the other nodes).

Parameters
• network (Network) – The Network of interest.

• state (tuple[int]) – The state of the network (a binary tuple).

Yields Subsystem – The next subsystem that could be a complex.

class pyphi.compute.network.FindAllComplexes(iterable, *context)
Computation engine for finding all complexes.

description = 'Finding complexes'

empty_result()
Return the default result with which to begin the computation.

static compute(subsystem)
Map over a single object from self.iterable.

process_result(new_sia, sias)
Reduce handler.

Every time a new result is generated by compute, this method is called with the result and the previous
(accumulated) result. This method compares or collates these two values, returning the new result.

Setting self.done to True in this method will abort the remainder of the computation, returning this final
result.

58 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

pyphi.compute.network.all_complexes(network, state)
Return a generator for all complexes of the network.

Note: Includes reducible, zero-Φ complexes (which are not, strictly speaking, complexes at all).

Parameters
• network (Network) – The Network of interest.

• state (tuple[int]) – The state of the network (a binary tuple).

Yields SystemIrreducibilityAnalysis – A SystemIrreducibilityAnalysis for each Subsystem
of the Network .

class pyphi.compute.network.FindIrreducibleComplexes(iterable, *context)
Computation engine for finding irreducible complexes of a network.

process_result(new_sia, sias)
Reduce handler.

Every time a new result is generated by compute, this method is called with the result and the previous
(accumulated) result. This method compares or collates these two values, returning the new result.

Setting self.done to True in this method will abort the remainder of the computation, returning this final
result.

pyphi.compute.network.complexes(network, state)
Return all irreducible complexes of the network.

Parameters
• network (Network) – The Network of interest.

• state (tuple[int]) – The state of the network (a binary tuple).

Yields SystemIrreducibilityAnalysis – A SystemIrreducibilityAnalysis for each Subsystem
of the Network , excluding those with Φ = 0.

pyphi.compute.network.major_complex(network, state)
Return the major complex of the network.

Parameters
• network (Network) – The Network of interest.

• state (tuple[int]) – The state of the network (a binary tuple).

Returns The SystemIrreducibilityAnalysis for the Subsystem with maximal Φ.

Return type SystemIrreducibilityAnalysis

pyphi.compute.network.condensed(network, state)
Return a list of maximal non-overlapping complexes.

Parameters
• network (Network) – The Network of interest.

• state (tuple[int]) – The state of the network (a binary tuple).

Returns A list of SystemIrreducibilityAnalysis for non-overlapping complexes with maximal
Φ values.

Return type list[SystemIrreducibilityAnalysis]

1.26. compute.network 59

PyPhi Documentation, Release v1.2.1

1.27 compute.parallel

Utilities for parallel computation.

pyphi.compute.parallel.get_num_processes()
Return the number of processes to use in parallel.

class pyphi.compute.parallel.ExceptionWrapper(exception)
A picklable wrapper suitable for passing exception tracebacks through instances of multiprocessing.Queue.

Parameters exception (Exception) – The exception to wrap.

reraise()
Re-raise the exception.

class pyphi.compute.parallel.MapReduce(iterable, *context)
An engine for doing heavy computations over an iterable.

This is similar to multiprocessing.Pool, but allows computations to shortcircuit, and supports both parallel
and sequential computations.

Parameters
• iterable (Iterable) – A collection of objects to perform a computation over.

• *context – Any additional data necessary to complete the computation.

Any subclass of MapReduce must implement three methods:

- ``empty_result``,
- ``compute``, (map), and
- ``process_result`` (reduce).

The engine includes a builtin tqdm progress bar; this can be disabled by setting pyphi.config.PROGRESS_BARS
to False.

Parallel operations start a daemon thread which handles log messages sent from worker processes.

Subprocesses spawned by MapReduce cannot spawn more subprocesses; be aware of this when composing nested
computations. This is not an issue in practice because it is typically most efficient to only parallelize the top level
computation.

description = ''

empty_result(*context)
Return the default result with which to begin the computation.

static compute(obj, *context)
Map over a single object from self.iterable.

process_result(new_result, old_result)
Reduce handler.

Every time a new result is generated by compute, this method is called with the result and the previous
(accumulated) result. This method compares or collates these two values, returning the new result.

Setting self.done to True in this method will abort the remainder of the computation, returning this final
result.

init_progress_bar()
Initialize and return a progress bar.

60 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

static worker(compute, task_queue, result_queue, log_queue, complete, parent_config, *context)
A worker process, run by multiprocessing.Process.

start_parallel()
Initialize all queues and start the worker processes and the log thread.

initialize_tasks()
Load the input queue to capacity.

Overfilling causes a deadlock when queue.put blocks when full, so further tasks are enqueued as results are
returned.

maybe_put_task()
Enqueue the next task, if there are any waiting.

run_parallel()
Perform the computation in parallel, reading results from the output queue and passing them to
process_result.

finish_parallel()
Orderly shutdown of workers.

run_sequential()
Perform the computation sequentially, only holding two computed objects in memory at a time.

run(parallel=True)
Perform the computation.

Keyword Arguments parallel (boolean) – If True, run the computation in parallel. Other-
wise, operate sequentially.

class pyphi.compute.parallel.LogThread(q)
Thread which handles log records sent from MapReduce processes.

It listens to an instance of multiprocessing.Queue, rewriting log messages to the PyPhi log handler.

This constructor should always be called with keyword arguments. Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N” where N is a small
decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

If a subclass overrides the constructor, it must make sure to invoke the base class constructor (Thread.__init__())
before doing anything else to the thread.

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from
the args and kwargs arguments, respectively.

pyphi.compute.parallel.configure_worker_logging(queue)
Configure a worker process to log all messages to queue.

1.27. compute.parallel 61

PyPhi Documentation, Release v1.2.1

1.28 compute.subsystem

Functions for computing subsystem-level properties.

class pyphi.compute.subsystem.ComputeCauseEffectStructure(iterable, *context)
Engine for computing a CauseEffectStructure.

description = 'Computing concepts'

property subsystem

empty_result(*args)
Return the default result with which to begin the computation.

static compute(mechanism, subsystem, purviews, cause_purviews, effect_purviews)
Compute a Concept for a mechanism, in this Subsystem with the provided purviews.

process_result(new_concept, concepts)
Save all concepts with non-zero 𝜙 to the CauseEffectStructure.

pyphi.compute.subsystem.ces(subsystem, mechanisms=False, purviews=False, cause_purviews=False,
effect_purviews=False, parallel=False)

Return the conceptual structure of this subsystem, optionally restricted to concepts with the mechanisms and
purviews given in keyword arguments.

If you don’t need the full CauseEffectStructure, restricting the possible mechanisms and purviews can make
this function much faster.

Parameters subsystem (Subsystem) – The subsystem for which to determine the
CauseEffectStructure.

Keyword Arguments
• mechanisms (tuple[tuple[int]]) – Restrict possible mechanisms to those in this list.

• purviews (tuple[tuple[int]]) – Same as in concept().

• cause_purviews (tuple[tuple[int]]) – Same as in concept().

• effect_purviews (tuple[tuple[int]]) – Same as in concept().

• parallel (bool) – Whether to compute concepts in parallel. If True, overrides config.
PARALLEL_CONCEPT_EVALUATION.

Returns A tuple of every Concept in the cause-effect structure.

Return type CauseEffectStructure

pyphi.compute.subsystem.conceptual_info(subsystem)
Return the conceptual information for a Subsystem .

This is the distance from the subsystem’s CauseEffectStructure to the null concept.

pyphi.compute.subsystem.evaluate_cut(uncut_subsystem, cut, unpartitioned_ces)
Compute the system irreducibility for a given cut.

Parameters
• uncut_subsystem (Subsystem) – The subsystem without the cut applied.

• cut (Cut) – The cut to evaluate.

• unpartitioned_ces (CauseEffectStructure) – The cause-effect structure of the uncut
subsystem.

Returns The SystemIrreducibilityAnalysis for that cut.

62 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Return type SystemIrreducibilityAnalysis

class pyphi.compute.subsystem.ComputeSystemIrreducibility(iterable, *context)
Computation engine for system-level irreducibility.

description = 'Evaluating cuts'

empty_result(subsystem, unpartitioned_ces)
Begin with a SystemIrreducibilityAnalysis with infinite Φ; all actual SIAs will have less.

static compute(cut, subsystem, unpartitioned_ces)
Evaluate a cut.

process_result(new_sia, min_sia)
Check if the new SIA has smaller Φ than the standing result.

pyphi.compute.subsystem.sia_bipartitions(nodes, node_labels=None)
Return all Φ cuts for the given nodes.

This value changes based on config.CUT_ONE_APPROXIMATION.

Parameters nodes (tuple[int]) – The node indices to partition.

Returns All unidirectional partitions.

Return type list[Cut]

pyphi.compute.subsystem.sia(cache_key, subsystem)
Return the minimal information partition of a subsystem.

Parameters subsystem (Subsystem) – The candidate set of nodes.

Returns A nested structure containing all the data from the intermediate calculations. The top level
contains the basic irreducibility information for the given subsystem.

Return type SystemIrreducibilityAnalysis

pyphi.compute.subsystem.phi(subsystem)
Return the Φ value of a subsystem.

class pyphi.compute.subsystem.ConceptStyleSystem(subsystem, direction, cut=None)
A functional replacement for Subsystem implementing concept-style system cuts.

apply_cut(cut)

__getattr__(name)
Pass attribute access through to the basic subsystem.

property cause_system

property effect_system

concept(mechanism, purviews=False, cause_purviews=False, effect_purviews=False)
Compute a concept, using the appropriate system for each side of the cut.

pyphi.compute.subsystem.concept_cuts(direction, node_indices, node_labels=None)
Generator over all concept-syle cuts for these nodes.

pyphi.compute.subsystem.directional_sia(subsystem, direction, unpartitioned_ces=None)
Calculate a concept-style SystemIrreducibilityAnalysisCause or SystemIrreducibilityAnalysisEffect.

class pyphi.compute.subsystem.SystemIrreducibilityAnalysisConceptStyle(sia_cause, sia_effect)
Represents a SystemIrreducibilityAnalysis computed using concept-style system cuts.

property min_sia

1.28. compute.subsystem 63

PyPhi Documentation, Release v1.2.1

__getattr__(name)
Pass attribute access through to the minimal SIA.

unorderable_unless_eq = ['network']

order_by()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared,
etc.

pyphi.compute.subsystem.sia_concept_style(subsystem)
Compute a concept-style SystemIrreducibilityAnalysis

1.29 conf

1.29.1 Loading a configuration

Various aspects of PyPhi’s behavior can be configured.

When PyPhi is imported, it checks for a YAML file named pyphi_config.yml in the current directory and automat-
ically loads it if it exists; otherwise the default configuration is used.

The various settings are listed here with their defaults.

>>> import pyphi
>>> defaults = pyphi.config.defaults()

Print the config object to see the current settings:

>>> print(pyphi.config)
{ 'ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS': False,
'CACHE_SIAS': False,
'CACHE_POTENTIAL_PURVIEWS': True,
'CACHING_BACKEND': 'fs',
...

Setting can be changed on the fly by assigning them a new value:

>>> pyphi.config.PROGRESS_BARS = False

It is also possible to manually load a configuration file:

>>> pyphi.config.load_file('pyphi_config.yml')

Or load a dictionary of configuration values:

>>> pyphi.config.load_dict({'PRECISION': 1})

64 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

1.29.2 Approximations and theoretical options

These settings control the algorithms PyPhi uses.

• ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS

• CUT_ONE_APPROXIMATION

• MEASURE

• PARTITION_TYPE

• PICK_SMALLEST_PURVIEW

• USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE

• SYSTEM_CUTS

• SINGLE_MICRO_NODES_WITH_SELFLOOPS_HAVE_PHI

• VALIDATE_SUBSYSTEM_STATES

• VALIDATE_CONDITIONAL_INDEPENDENCE

1.29.3 Parallelization and system resources

These settings control how much processing power and memory is available for PyPhi to use. The default values may
not be appropriate for your use-case or machine, so please check these settings before running anything. Otherwise,
there is a risk that simulations might crash (potentially after running for a long time!), resulting in data loss.

• PARALLEL_CONCEPT_EVALUATION

• PARALLEL_CUT_EVALUATION

• PARALLEL_COMPLEX_EVALUATION

• NUMBER_OF_CORES

• MAXIMUM_CACHE_MEMORY_PERCENTAGE

Important: Only one of PARALLEL_CONCEPT_EVALUATION, PARALLEL_CUT_EVALUATION, and
PARALLEL_COMPLEX_EVALUATION can be set to True at a time.

For most networks, PARALLEL_CUT_EVALUATION is the most efficient. This is because the algorithm is expo-
nential time in the number of nodes, so the most of the time is spent on the largest subsystem.

You should only parallelize concept evaluation if you are just computing a CauseEffectStructure.

1.29.4 Memoization and caching

PyPhi provides a number of ways to cache intermediate results.

• CACHE_SIAS

• CACHE_REPERTOIRES

• CACHE_POTENTIAL_PURVIEWS

• CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA

• CACHING_BACKEND

1.29. conf 65

PyPhi Documentation, Release v1.2.1

• FS_CACHE_VERBOSITY

• FS_CACHE_DIRECTORY

• MONGODB_CONFIG

• REDIS_CACHE

• REDIS_CONFIG

1.29.5 Logging

These settings control how PyPhi handles messages. Logs can be written to standard output, a file, both, or none. If
these simple default controls are not flexible enough for you, you can override the entire logging configuration. See the
documentation on Python’s logger for more information.

• WELCOME_OFF

• LOG_STDOUT_LEVEL

• LOG_FILE_LEVEL

• LOG_FILE

• PROGRESS_BARS

• REPR_VERBOSITY

• PRINT_FRACTIONS

1.29.6 Numerical precision

• PRECISION

1.29.7 The config API

class pyphi.conf.Option(default, values=None, on_change=None, doc=None)
A descriptor implementing PyPhi configuration options.

Parameters default – The default value of this Option.

Keyword Arguments
• values (list) – Allowed values for this option. A ValueError will be raised if values

is not None and the option is set to be a value not in the list.

• on_change (function) – Optional callback that is called when the value of the option is
changed. The Config instance is passed as the only argument to the callback.

• doc (str) – Optional docstring for the option.

class pyphi.conf.ConfigMeta(cls_name, bases, namespace)
Metaclass for Config.

Responsible for setting the name of each Optionwhen a subclass of Config is created; because Option objects
are defined on the class, not the instance, their name should only be set once.

Python 3.6 handles this exact need with the special descriptor method __set_name__ (see PEP 487). We should
use that once we drop support for 3.4 & 3.5.

66 Chapter 1. Installation

https://docs.python.org/3.4/library/logging.html

PyPhi Documentation, Release v1.2.1

class pyphi.conf.Config
Base configuration object.

See PyphiConfig for usage.

classmethod options()
Return a dictionary of the Option objects for this config.

defaults()
Return the default values of this configuration.

load_dict(dct)
Load a dictionary of configuration values.

load_file(filename)
Load config from a YAML file.

snapshot()
Return a snapshot of the current values of this configuration.

override(**new_values)
Decorator and context manager to override configuration values.

The initial configuration values are reset after the decorated function returns or the context manager com-
pletes it block, even if the function or block raises an exception. This is intended to be used by tests which
require specific configuration values.

Example

>>> from pyphi import config
>>> @config.override(PRECISION=20000)
... def test_something():
... assert config.PRECISION == 20000
...
>>> test_something()
>>> with config.override(PRECISION=100):
... assert config.PRECISION == 100
...

pyphi.conf.configure_logging(conf)
Reconfigure PyPhi logging based on the current configuration.

pyphi.conf.configure_joblib(conf)

pyphi.conf.configure_precision(conf)

class pyphi.conf.PyphiConfig
pyphi.config is an instance of this class.

ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS
default=False

In certain cases, making a cut can actually cause a previously reducible concept to become a proper, ir-
reducible concept. Assuming this can never happen can increase performance significantly, however the
obtained results are not strictly accurate.

CUT_ONE_APPROXIMATION
default=False

1.29. conf 67

PyPhi Documentation, Release v1.2.1

When determining the MIP for Φ, this restricts the set of system cuts that are considered to only those that
cut the inputs or outputs of a single node. This restricted set of cuts scales linearly with the size of the
system; the full set of all possible bipartitions scales exponentially. This approximation is more likely to
give theoretically accurate results with modular, sparsely-connected, or homogeneous networks.

MEASURE
default='EMD'

The measure to use when computing distances between repertoires and concepts. A full list of currently
installed measures is available by calling print(pyphi.distance.measures.all()). Note that some
measures cannot be used for calculating Φ because they are asymmetric.

Custom measures can be added using the pyphi.distance.measures.register decorator. For exam-
ple:

from pyphi.distance import measures

@measures.register('ALWAYS_ZERO')
def always_zero(a, b):

return 0

This measure can then be used by setting config.MEASURE = 'ALWAYS_ZERO'.

If the measure is asymmetric you should register it using the asymmetric keyword argument. See
distance for examples.

PARALLEL_CONCEPT_EVALUATION
default=False

Controls whether concepts are evaluated in parallel when computing cause-effect structures.

PARALLEL_CUT_EVALUATION
default=True

Controls whether system cuts are evaluated in parallel, which is faster but requires more memory. If cuts
are evaluated sequentially, only two SystemIrreducibilityAnalysis instances need to be in memory
at once.

PARALLEL_COMPLEX_EVALUATION
default=False

Controls whether systems are evaluated in parallel when computing complexes.

NUMBER_OF_CORES
default=-1

Controls the number of CPU cores used to evaluate unidirectional cuts. Negative numbers count backwards
from the total number of available cores, with -1 meaning ‘use all available cores.’

MAXIMUM_CACHE_MEMORY_PERCENTAGE
default=50

PyPhi employs several in-memory caches to speed up computation. However, these can quickly use a lot of
memory for large networks or large numbers of them; to avoid thrashing, this setting limits the percentage
of a system’s RAM that the caches can collectively use.

CACHE_SIAS
default=False

PyPhi is equipped with a transparent caching system for SystemIrreducibilityAnalysis objects which
stores them as they are computed to avoid having to recompute them later. This makes it easy to play around
interactively with the program, or to accumulate results with minimal effort. For larger projects, however,

68 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

it is recommended that you manage the results explicitly, rather than relying on the cache. For this reason
it is disabled by default.

CACHE_REPERTOIRES
default=True

PyPhi caches cause and effect repertoires. This greatly improves speed, but can consume a significant
amount of memory. If you are experiencing memory issues, try disabling this.

CACHE_POTENTIAL_PURVIEWS
default=True

Controls whether the potential purviews of mechanisms of a network are cached. Caching speeds up com-
putations by not recomputing expensive reducibility checks, but uses additional memory.

CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA
default=False

Controls whether a Subsystem’s repertoire and MICE caches are cleared with clear_caches() after
computing the SystemIrreducibilityAnalysis. If you don’t need to do any more computations after
running sia(), then enabling this may help conserve memory.

CACHING_BACKEND
default='fs'

Controls whether precomputed results are stored and read from a local filesystem-based cache in the current
directory or from a database. Set this to 'fs' for the filesystem, 'db' for the database.

FS_CACHE_VERBOSITY
default=0, on_change=configure_joblib

Controls how much caching information is printed if the filesystem cache is used. Takes a value between 0
and 11.

FS_CACHE_DIRECTORY
default='__pyphi_cache__', on_change=configure_joblib

If the filesystem is used for caching, the cache will be stored in this directory. This directory can be copied
and moved around if you want to reuse results e.g. on a another computer, but it must be in the same
directory from which Python is being run.

MONGODB_CONFIG
27017, ‘database_name’: ‘pyphi’, ‘collection_name’: ‘cache’}``

Set the configuration for the MongoDB database backend (only has an effect if CACHING_BACKEND is 'db').

Type ``default={‘host’

Type ‘localhost’, ‘port’

REDIS_CACHE
default=False

Specifies whether to use Redis to cache MaximallyIrreducibleCauseOrEffect.

REDIS_CONFIG
6379, ‘db’: 0, ‘test_db’: 1}``

Configure the Redis database backend. These are the defaults in the provided redis.conf file.

Type ``default={‘host’

Type ‘localhost’, ‘port’

1.29. conf 69

PyPhi Documentation, Release v1.2.1

WELCOME_OFF
default=False

Specifies whether to suppress the welcome message when PyPhi is imported.

Alternatively, you may suppress the message by setting the environment variable PYPHI_WELCOME_OFF to
any value in your shell:

export PYPHI_WELCOME_OFF='yes'

The message will not print if either this option is True or the environment variable is set.

LOG_FILE
default='pyphi.log', on_change=configure_logging

Controls the name of the log file.

LOG_FILE_LEVEL
default='INFO', on_change=configure_logging

Controls the level of log messages written to the log file. This setting has the same possible values as
LOG_STDOUT_LEVEL.

LOG_STDOUT_LEVEL
default='WARNING', on_change=configure_logging

Controls the level of log messages written to standard output. Can be one of 'DEBUG', 'INFO', 'WARNING',
'ERROR', 'CRITICAL', or None. 'DEBUG' is the least restrictive level and will show the most log messages.
'CRITICAL' is the most restrictive level and will only display information about fatal errors. If set to None,
logging to standard output will be disabled entirely.

PROGRESS_BARS
default=True

Controls whether to show progress bars on the console.

Tip: If you are iterating over many systems rather than doing one long-running calculation,
consider disabling this for speed.

PRECISION
default=6, on_change=configure_precision

If MEASURE is EMD, then the Earth Mover’s Distance is calculated with an external C++ library that a numer-
ical optimizer to find a good approximation. Consequently, systems with analytically zero Φ will sometimes
be numerically found to have a small but non-zero amount. This setting controls the number of decimal
places to which PyPhi will consider EMD calculations accurate. Values of Φ lower than 10e-PRECISION
will be considered insignificant and treated as zero. The default value is about as accurate as the EMD
computations get.

VALIDATE_SUBSYSTEM_STATES
default=True

Controls whether PyPhi checks if the subsystems’s state is possible (reachable with nonzero probability
from some previous state), given the subsystem’s TPM (which is conditioned on background conditions).
If this is turned off, then calculated Φ values may not be valid, since they may be associated with a
subsystem that could never be in the given state.

VALIDATE_CONDITIONAL_INDEPENDENCE
default=True

Controls whether PyPhi checks if a system’s TPM is conditionally independent.

70 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

SINGLE_MICRO_NODES_WITH_SELFLOOPS_HAVE_PHI
default=False

If set to True, the Φ value of single micro-node subsystems is the difference between their unpartitioned
CauseEffectStructure (a single concept) and the null concept. If set to False, their Φ is defined to be
zero. Single macro-node subsystems may always be cut, regardless of circumstances.

REPR_VERBOSITY
default=2, values=[0, 1, 2]

Controls the verbosity of __repr__ methods on PyPhi objects. Can be set to 0, 1, or 2. If set to 1, calling
repr on PyPhi objects will return pretty-formatted and legible strings, excluding repertoires. If set to 2,
repr calls also include repertoires.

Although this breaks the convention that __repr__ methods should return a representation which can re-
construct the object, readable representations are convenient since the Python REPL calls repr to represent
all objects in the shell and PyPhi is often used interactively with the REPL. If set to 0, repr returns more
traditional object representations.

PRINT_FRACTIONS
default=True

Controls whether numbers in a repr are printed as fractions. Numbers are still printed as decimals if the
fraction’s denominator would be large. This only has an effect if REPR_VERBOSITY > 0.

PARTITION_TYPE
default='BI'

Controls the type of partition used for 𝜙 computations.

If set to 'BI', partitions will have two parts.

If set to 'TRI', partitions will have three parts. In addition, computations will only consider partitions that
strictly partition the mechanism. That is, for the mechanism (A, B) and purview (B, C, D) the partition:

A,B
×

B C,D

is not considered, but:

A B
×

B C,D

is. The following is also valid:

A,B
×
B,C,D

In addition, this setting introduces “wedge” tripartitions of the form:

A B
× ×

B C D

where the mechanism in the third part is always empty.

Finally, if set to 'ALL', all possible partitions will be tested.

1.29. conf 71

PyPhi Documentation, Release v1.2.1

You can experiment with custom partitioning strategies using the pyphi.partition.
partition_types.register decorator. For example:

from pyphi.models import KPartition, Part
from pyphi.partition import partition_types

@partition_types.register('SINGLE_NODE')
def single_node_partitions(mechanism, purview, node_labels=None):
for element in mechanism:

element = tuple([element])
others = tuple(sorted(set(mechanism) - set(element)))

part1 = Part(mechanism=element, purview=())
part2 = Part(mechanism=others, purview=purview)

yield KPartition(part1, part2, node_labels=node_labels)

This generates the set of partitions that cut connections between a single mechanism element and the entire
purview. The mechanism and purview of each Part remain undivided - only connections between parts
are severed.

You can use this new partititioning scheme by setting config.PARTITION_TYPE = 'SINGLE_NODE'.

See partition for more examples.

PICK_SMALLEST_PURVIEW
default=False

When computing a MaximallyIrreducibleCause or MaximallyIrreducibleEffect, it is possible
for several MIPs to have the same 𝜙 value. If this setting is set to True the MIP with the smallest purview
is chosen; otherwise, the one with largest purview is chosen.

USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE
default=False

If set to True, the distance between cause-effect structures (when computing a
SystemIrreducibilityAnalysis) is calculated using the difference between the sum of 𝜙 in the
cause-effect structures instead of the extended EMD.

SYSTEM_CUTS
default='3.0_STYLE', values=['3.0_STYLE', 'CONCEPT_STYLE']

If set to '3.0_STYLE', then traditional IIT 3.0 cuts will be used when computing Φ. If set to
'CONCEPT_STYLE', then experimental concept-style system cuts will be used instead.

log()
Log current settings.

72 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

1.30 connectivity

Functions for determining network connectivity properties.

pyphi.connectivity.apply_boundary_conditions_to_cm(external_indices, cm)
Remove connections to or from external nodes.

pyphi.connectivity.get_inputs_from_cm(index, cm)
Return indices of inputs to the node with the given index.

pyphi.connectivity.get_outputs_from_cm(index, cm)
Return indices of the outputs of node with the given index.

pyphi.connectivity.causally_significant_nodes(cm)
Return indices of nodes that have both inputs and outputs.

pyphi.connectivity.relevant_connections(n, _from, to)
Construct a connectivity matrix.

Parameters
• n (int) – The dimensions of the matrix

• _from (tuple[int]) – Nodes with outgoing connections to to

• to (tuple[int]) – Nodes with incoming connections from _from

Returns An 𝑁 ×𝑁 connectivity matrix with the (𝑖, 𝑗)th entry is 1 if 𝑖 is in _from and 𝑗 is in to, and
0 otherwise.

Return type np.ndarray

pyphi.connectivity.block_cm(cm)
Return whether cm can be arranged as a block connectivity matrix.

If so, the corresponding mechanism/purview is trivially reducible. Technically, only square matrices are “block
diagonal”, but the notion of connectivity carries over.

We test for block connectivity by trying to grow a block of nodes such that:

• ‘source’ nodes only input to nodes in the block

• ‘sink’ nodes only receive inputs from source nodes in the block

For example, the following connectivity matrix represents connections from nodes1 = A, B, C to nodes2 =
D, E, F, G (without loss of generality, note that nodes1 and nodes2 may share elements):

D E F G
A [1, 1, 0, 0]
B [1, 1, 0, 0]
C [0, 0, 1, 1]

Since nodes 𝐴𝐵 only connect to nodes 𝐷𝐸, and node 𝐶 only connects to nodes 𝐹𝐺, the subgraph is reducible,
because the cut

A,B C
×

D,E F,G

does not change the structure of the graph.

pyphi.connectivity.block_reducible(cm, nodes1, nodes2)
Return whether connections from nodes1 to nodes2 are reducible.

1.30. connectivity 73

PyPhi Documentation, Release v1.2.1

Parameters
• cm (np.ndarray) – The network’s connectivity matrix.

• nodes1 (tuple[int]) – Source nodes

• nodes2 (tuple[int]) – Sink nodes

pyphi.connectivity.is_strong(cm, nodes=None)
Return whether the connectivity matrix is strongly connected.

Remember that a singleton graph is strongly connected.

Parameters cm (np.ndarray) – A square connectivity matrix.

Keyword Arguments nodes (tuple[int]) – A subset of nodes to consider.

pyphi.connectivity.is_weak(cm, nodes=None)
Return whether the connectivity matrix is weakly connected.

Parameters cm (np.ndarray) – A square connectivity matrix.

Keyword Arguments nodes (tuple[int]) – A subset of nodes to consider.

pyphi.connectivity.is_full(cm, nodes1, nodes2)
Test connectivity of one set of nodes to another.

Parameters
• cm (np.ndarrray) – The connectivity matrix

• nodes1 (tuple[int]) – The nodes whose outputs to nodes2 will be tested.

• nodes2 (tuple[int]) – The nodes whose inputs from nodes1 will be tested.

Returns True if all elements in nodes1 output to some element in nodes2 and all elements in
nodes2 have an input from some element in nodes1, or if either set of nodes is empty; False
otherwise.

Return type bool

1.31 constants

Package-wide constants.

pyphi.constants.EPSILON = 1e-06
The threshold below which we consider differences in phi values to be zero.

pyphi.constants.FILESYSTEM = 'fs'
Label for the filesystem cache backend.

pyphi.constants.DATABASE = 'db'
Label for the MongoDB cache backend.

pyphi.constants.PICKLE_PROTOCOL = 4
The protocol used for pickling objects.

pyphi.constants.joblib_memory = Memory(location=__pyphi_cache__/joblib)
The joblib Memory object for persistent caching without a database.

pyphi.constants.OFF = (0,)
Node states

74 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

1.32 convert

Conversion functions.

See the documentation on PyPhi Transition probability matrix conventions for information on the different representa-
tions that these functions convert between.

pyphi.convert.reverse_bits(i, n)
Reverse the bits of the n-bit decimal number i.

Examples

>>> reverse_bits(12, 7)
24
>>> reverse_bits(0, 1)
0
>>> reverse_bits(1, 2)
2

pyphi.convert.nodes2indices(nodes)
Convert nodes to a tuple of their indices.

pyphi.convert.nodes2state(nodes)
Convert nodes to a tuple of their states.

pyphi.convert.be2le(i, n)
Convert between big-endian and little-endian for indices in range(n).

pyphi.convert.le2be(i, n)
Convert between big-endian and little-endian for indices in range(n).

pyphi.convert.state2be_index(state)
Convert a PyPhi state-tuple to a decimal index according to the big-endian convention.

Parameters state (tuple[int]) – A state-tuple where the 𝑖th element of the tuple gives the state
of the 𝑖th node.

Returns A decimal integer corresponding to a network state under the big-endian convention.

Return type int

Examples

>>> state2be_index((1, 0, 0, 0, 0))
16
>>> state2be_index((1, 1, 1, 0, 0, 0, 0, 0))
224

pyphi.convert.state2le_index(state)
Convert a PyPhi state-tuple to a decimal index according to the little-endian convention.

Parameters state (tuple[int]) – A state-tuple where the 𝑖th element of the tuple gives the state
of the 𝑖th node.

Returns A decimal integer corresponding to a network state under the little-endian convention.

Return type int

1.32. convert 75

PyPhi Documentation, Release v1.2.1

Examples

>>> state2le_index((1, 0, 0, 0, 0))
1
>>> state2le_index((1, 1, 1, 0, 0, 0, 0, 0))
7

pyphi.convert.le_index2state(i, number_of_nodes)
Convert a decimal integer to a PyPhi state tuple with the little-endian convention.

The output is the reverse of be_index2state().

Parameters i (int) – A decimal integer corresponding to a network state under the little-endian
convention.

Returns A state-tuple where the 𝑖th element of the tuple gives the state of the 𝑖th node.

Return type tuple[int]

Examples

>>> number_of_nodes = 5
>>> le_index2state(1, number_of_nodes)
(1, 0, 0, 0, 0)
>>> number_of_nodes = 8
>>> le_index2state(7, number_of_nodes)
(1, 1, 1, 0, 0, 0, 0, 0)

pyphi.convert.be_index2state(i, number_of_nodes)
Convert a decimal integer to a PyPhi state tuple using the big-endian convention that the most-significant bits
correspond to low-index nodes.

The output is the reverse of le_index2state().

Parameters i (int) – A decimal integer corresponding to a network state under the big-endian con-
vention.

Returns A state-tuple where the 𝑖th element of the tuple gives the state of the 𝑖th node.

Return type tuple[int]

Examples

>>> number_of_nodes = 5
>>> be_index2state(1, number_of_nodes)
(0, 0, 0, 0, 1)
>>> number_of_nodes = 8
>>> be_index2state(7, number_of_nodes)
(0, 0, 0, 0, 0, 1, 1, 1)

pyphi.convert.be2le_state_by_state(tpm)
Convert a state-by-state TPM from big-endian to little-endian or vice versa.

Parameters tpm (np.ndarray) – A state-by-state TPM.

Returns The state-by-state TPM in the other indexing format.

76 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Return type np.ndarray

Example

>>> tpm = np.arange(16).reshape([4, 4])
>>> be2le_state_by_state(tpm)
array([[0., 1., 2., 3.],

[8., 9., 10., 11.],
[4., 5., 6., 7.],
[12., 13., 14., 15.]])

pyphi.convert.le2be_state_by_state(tpm)
Convert a state-by-state TPM from big-endian to little-endian or vice versa.

Parameters tpm (np.ndarray) – A state-by-state TPM.

Returns The state-by-state TPM in the other indexing format.

Return type np.ndarray

Example

>>> tpm = np.arange(16).reshape([4, 4])
>>> be2le_state_by_state(tpm)
array([[0., 1., 2., 3.],

[8., 9., 10., 11.],
[4., 5., 6., 7.],
[12., 13., 14., 15.]])

pyphi.convert.to_multidimensional(tpm)
Reshape a state-by-node TPM to the multidimensional form.

See documentation for the Network object for more information on TPM formats.

pyphi.convert.to_2dimensional(tpm)
Reshape a state-by-node TPM to the 2-dimensional form.

See Transition probability matrix conventions and documentation for the Network object for more information
on TPM representations.

pyphi.convert.state_by_state2state_by_node(tpm)
Convert a state-by-state TPM to a state-by-node TPM.

Danger: Many nondeterministic state-by-state TPMs can be represented by a single a state-by-state TPM.
However, the mapping can be made to be one-to-one if we assume the state-by-state TPM is conditionally
independent, as this function does. If the given TPM is not conditionally independent, the conditional
dependencies will be silently lost.

Note: The indices of the rows and columns of the state-by-state TPM are assumed to follow the little-endian
convention. The indices of the rows of the resulting state-by-node TPM also follow the little-endian convention.
See the documentation on PyPhi the Transition probability matrix conventions more information.

1.32. convert 77

PyPhi Documentation, Release v1.2.1

Parameters tpm (list[list] or np.ndarray) – A square state-by-state TPM with row and col-
umn indices following the little-endian convention.

Returns A state-by-node TPM, with row indices following the little-endian convention.

Return type np.ndarray

Example

>>> tpm = np.array([[0.5, 0.5, 0.0, 0.0],
... [0.0, 1.0, 0.0, 0.0],
... [0.0, 0.2, 0.0, 0.8],
... [0.0, 0.3, 0.7, 0.0]])
>>> state_by_state2state_by_node(tpm)
array([[[0.5, 0.],

[1. , 0.8]],

[[1. , 0.],
[0.3, 0.7]]])

pyphi.convert.state_by_node2state_by_state(tpm)
Convert a state-by-node TPM to a state-by-state TPM.

Important: A nondeterministic state-by-node TPM can have more than one representation as a state-by-state
TPM. However, the mapping can be made to be one-to-one if we assume the TPMs to be conditionally indepen-
dent. Therefore, this function returns the corresponding conditionally independent state-by-state TPM.

Note: The indices of the rows of the state-by-node TPM are assumed to follow the little-endian convention,
while the indices of the columns follow the big-endian convention. The indices of the rows and columns of the
resulting state-by-state TPM both follow the big-endian convention. See the documentation on PyPhi Transition
probability matrix conventions for more info.

Parameters tpm (list[list] or np.ndarray) – A state-by-node TPM with row indices follow-
ing the little-endian convention and column indices following the big-endian convention.

Returns A state-by-state TPM, with both row and column indices following the big-endian conven-
tion.

Return type np.ndarray

>>> tpm = np.array([[1, 1, 0],
... [0, 0, 1],
... [0, 1, 1],
... [1, 0, 0],
... [0, 0, 1],
... [1, 0, 0],
... [1, 1, 1],
... [1, 0, 1]])
>>> state_by_node2state_by_state(tpm)
array([[0., 0., 0., 1., 0., 0., 0., 0.],

[0., 0., 0., 0., 1., 0., 0., 0.],
(continues on next page)

78 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

(continued from previous page)

[0., 0., 0., 0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 1., 0., 0.]])

pyphi.convert.b2l(i, n)
Convert between big-endian and little-endian for indices in range(n).

pyphi.convert.l2b(i, n)
Convert between big-endian and little-endian for indices in range(n).

pyphi.convert.l2s(i, number_of_nodes)
Convert a decimal integer to a PyPhi state tuple with the little-endian convention.

The output is the reverse of be_index2state().

Parameters i (int) – A decimal integer corresponding to a network state under the little-endian
convention.

Returns A state-tuple where the 𝑖th element of the tuple gives the state of the 𝑖th node.

Return type tuple[int]

Examples

>>> number_of_nodes = 5
>>> le_index2state(1, number_of_nodes)
(1, 0, 0, 0, 0)
>>> number_of_nodes = 8
>>> le_index2state(7, number_of_nodes)
(1, 1, 1, 0, 0, 0, 0, 0)

pyphi.convert.b2s(i, number_of_nodes)
Convert a decimal integer to a PyPhi state tuple using the big-endian convention that the most-significant bits
correspond to low-index nodes.

The output is the reverse of le_index2state().

Parameters i (int) – A decimal integer corresponding to a network state under the big-endian con-
vention.

Returns A state-tuple where the 𝑖th element of the tuple gives the state of the 𝑖th node.

Return type tuple[int]

1.32. convert 79

PyPhi Documentation, Release v1.2.1

Examples

>>> number_of_nodes = 5
>>> be_index2state(1, number_of_nodes)
(0, 0, 0, 0, 1)
>>> number_of_nodes = 8
>>> be_index2state(7, number_of_nodes)
(0, 0, 0, 0, 0, 1, 1, 1)

pyphi.convert.s2l(state)
Convert a PyPhi state-tuple to a decimal index according to the little-endian convention.

Parameters state (tuple[int]) – A state-tuple where the 𝑖th element of the tuple gives the state
of the 𝑖th node.

Returns A decimal integer corresponding to a network state under the little-endian convention.

Return type int

Examples

>>> state2le_index((1, 0, 0, 0, 0))
1
>>> state2le_index((1, 1, 1, 0, 0, 0, 0, 0))
7

pyphi.convert.s2b(state)
Convert a PyPhi state-tuple to a decimal index according to the big-endian convention.

Parameters state (tuple[int]) – A state-tuple where the 𝑖th element of the tuple gives the state
of the 𝑖th node.

Returns A decimal integer corresponding to a network state under the big-endian convention.

Return type int

Examples

>>> state2be_index((1, 0, 0, 0, 0))
16
>>> state2be_index((1, 1, 1, 0, 0, 0, 0, 0))
224

pyphi.convert.b2l_sbs(tpm)
Convert a state-by-state TPM from big-endian to little-endian or vice versa.

Parameters tpm (np.ndarray) – A state-by-state TPM.

Returns The state-by-state TPM in the other indexing format.

Return type np.ndarray

80 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Example

>>> tpm = np.arange(16).reshape([4, 4])
>>> be2le_state_by_state(tpm)
array([[0., 1., 2., 3.],

[8., 9., 10., 11.],
[4., 5., 6., 7.],
[12., 13., 14., 15.]])

pyphi.convert.l2b_sbs(tpm)
Convert a state-by-state TPM from big-endian to little-endian or vice versa.

Parameters tpm (np.ndarray) – A state-by-state TPM.

Returns The state-by-state TPM in the other indexing format.

Return type np.ndarray

Example

>>> tpm = np.arange(16).reshape([4, 4])
>>> be2le_state_by_state(tpm)
array([[0., 1., 2., 3.],

[8., 9., 10., 11.],
[4., 5., 6., 7.],
[12., 13., 14., 15.]])

pyphi.convert.to_md(tpm)
Reshape a state-by-node TPM to the multidimensional form.

See documentation for the Network object for more information on TPM formats.

pyphi.convert.to_2d(tpm)
Reshape a state-by-node TPM to the 2-dimensional form.

See Transition probability matrix conventions and documentation for the Network object for more information
on TPM representations.

pyphi.convert.sbn2sbs(tpm)
Convert a state-by-node TPM to a state-by-state TPM.

Important: A nondeterministic state-by-node TPM can have more than one representation as a state-by-state
TPM. However, the mapping can be made to be one-to-one if we assume the TPMs to be conditionally indepen-
dent. Therefore, this function returns the corresponding conditionally independent state-by-state TPM.

Note: The indices of the rows of the state-by-node TPM are assumed to follow the little-endian convention,
while the indices of the columns follow the big-endian convention. The indices of the rows and columns of the
resulting state-by-state TPM both follow the big-endian convention. See the documentation on PyPhi Transition
probability matrix conventions for more info.

Parameters tpm (list[list] or np.ndarray) – A state-by-node TPM with row indices follow-
ing the little-endian convention and column indices following the big-endian convention.

1.32. convert 81

PyPhi Documentation, Release v1.2.1

Returns A state-by-state TPM, with both row and column indices following the big-endian conven-
tion.

Return type np.ndarray

>>> tpm = np.array([[1, 1, 0],
... [0, 0, 1],
... [0, 1, 1],
... [1, 0, 0],
... [0, 0, 1],
... [1, 0, 0],
... [1, 1, 1],
... [1, 0, 1]])
>>> state_by_node2state_by_state(tpm)
array([[0., 0., 0., 1., 0., 0., 0., 0.],

[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 1., 0., 0.]])

pyphi.convert.sbs2sbn(tpm)
Convert a state-by-state TPM to a state-by-node TPM.

Danger: Many nondeterministic state-by-state TPMs can be represented by a single a state-by-state TPM.
However, the mapping can be made to be one-to-one if we assume the state-by-state TPM is conditionally
independent, as this function does. If the given TPM is not conditionally independent, the conditional
dependencies will be silently lost.

Note: The indices of the rows and columns of the state-by-state TPM are assumed to follow the little-endian
convention. The indices of the rows of the resulting state-by-node TPM also follow the little-endian convention.
See the documentation on PyPhi the Transition probability matrix conventions more information.

Parameters tpm (list[list] or np.ndarray) – A square state-by-state TPM with row and col-
umn indices following the little-endian convention.

Returns A state-by-node TPM, with row indices following the little-endian convention.

Return type np.ndarray

82 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Example

>>> tpm = np.array([[0.5, 0.5, 0.0, 0.0],
... [0.0, 1.0, 0.0, 0.0],
... [0.0, 0.2, 0.0, 0.8],
... [0.0, 0.3, 0.7, 0.0]])
>>> state_by_state2state_by_node(tpm)
array([[[0.5, 0.],

[1. , 0.8]],

[[1. , 0.],
[0.3, 0.7]]])

1.33 direction

Causal directions.

class pyphi.direction.Direction(value)
Constant that parametrizes cause and effect methods.

Accessed using Direction.CAUSE and Direction.EFFECT, etc.

CAUSE = 0

EFFECT = 1

BIDIRECTIONAL = 2

to_json()

classmethod from_json(dct)

order(mechanism, purview)
Order the mechanism and purview in time.

If the direction is CAUSE, then the purview is at 𝑡 − 1 and the mechanism is at time 𝑡. If the direction is
EFFECT, then the mechanism is at time 𝑡 and the purview is at 𝑡 + 1.

1.34 distance

Functions for measuring distances.

class pyphi.distance.MeasureRegistry
Storage for measures registered with PyPhi.

Users can define custom measures:

1.33. direction 83

PyPhi Documentation, Release v1.2.1

Examples

>>> @measures.register('ALWAYS_ZERO')
... def always_zero(a, b):
... return 0

And use them by setting config.MEASURE = 'ALWAYS_ZERO'.

desc = 'measures'

register(name, asymmetric=False)
Decorator for registering a measure with PyPhi.

Parameters name (string) – The name of the measure.

Keyword Arguments asymmetric (boolean) – True if the measure is asymmetric.

asymmetric()
Return a list of asymmetric measures.

class pyphi.distance.np_suppress
Decorator to suppress NumPy warnings about divide-by-zero and multiplication of NaN.

Note: This should only be used in cases where you are sure that these warnings are not indicative of deeper
issues in your code.

pyphi.distance.hamming_emd(d1, d2)
Return the Earth Mover’s Distance between two distributions (indexed by state, one dimension per node) using
the Hamming distance between states as the transportation cost function.

Singleton dimensions are sqeezed out.

pyphi.distance.effect_emd(d1, d2)
Compute the EMD between two effect repertoires.

Because the nodes are independent, the EMD between effect repertoires is equal to the sum of the EMDs between
the marginal distributions of each node, and the EMD between marginal distribution for a node is the absolute
difference in the probabilities that the node is OFF.

Parameters
• d1 (np.ndarray) – The first repertoire.

• d2 (np.ndarray) – The second repertoire.

Returns The EMD between d1 and d2.

Return type float

pyphi.distance.l1(d1, d2)
Return the L1 distance between two distributions.

Parameters
• d1 (np.ndarray) – The first distribution.

• d2 (np.ndarray) – The second distribution.

Returns The sum of absolute differences of d1 and d2.

Return type float

84 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

pyphi.distance.kld(d1, d2)
Return the Kullback-Leibler Divergence (KLD) between two distributions.

Parameters
• d1 (np.ndarray) – The first distribution.

• d2 (np.ndarray) – The second distribution.

Returns The KLD of d1 from d2.

Return type float

pyphi.distance.entropy_difference(d1, d2)
Return the difference in entropy between two distributions.

pyphi.distance.psq2(d1, d2)
Compute the PSQ2 measure.

Parameters
• d1 (np.ndarray) – The first distribution.

• d2 (np.ndarray) – The second distribution.

pyphi.distance.mp2q(p, q)
Compute the MP2Q measure.

Parameters
• p (np.ndarray) – The unpartitioned repertoire

• q (np.ndarray) – The partitioned repertoire

pyphi.distance.klm(p, q)
Compute the KLM divergence.

pyphi.distance.directional_emd(direction, d1, d2)
Compute the EMD between two repertoires for a given direction.

The full EMD computation is used for cause repertoires. A fast analytic solution is used for effect repertoires.

Parameters
• direction (Direction) – CAUSE or EFFECT.

• d1 (np.ndarray) – The first repertoire.

• d2 (np.ndarray) – The second repertoire.

Returns The EMD between d1 and d2, rounded to PRECISION.

Return type float

Raises ValueError – If direction is invalid.

pyphi.distance.repertoire_distance(direction, r1, r2)
Compute the distance between two repertoires for the given direction.

Parameters
• direction (Direction) – CAUSE or EFFECT.

• r1 (np.ndarray) – The first repertoire.

• r2 (np.ndarray) – The second repertoire.

Returns The distance between d1 and d2, rounded to PRECISION.

1.34. distance 85

PyPhi Documentation, Release v1.2.1

Return type float

pyphi.distance.system_repertoire_distance(r1, r2)
Compute the distance between two repertoires of a system.

Parameters
• r1 (np.ndarray) – The first repertoire.

• r2 (np.ndarray) – The second repertoire.

Returns The distance between r1 and r2.

Return type float

1.35 distribution

Functions for manipulating probability distributions.

pyphi.distribution.normalize(a)
Normalize a distribution.

Parameters a (np.ndarray) – The array to normalize.

Returns a normalized so that the sum of its entries is 1.

Return type np.ndarray

pyphi.distribution.uniform_distribution(number_of_nodes)
Return the uniform distribution for a set of binary nodes, indexed by state (so there is one dimension per node,
the size of which is the number of possible states for that node).

Parameters nodes (np.ndarray) – A set of indices of binary nodes.

Returns The uniform distribution over the set of nodes.

Return type np.ndarray

pyphi.distribution.marginal_zero(repertoire, node_index)
Return the marginal probability that the node is OFF.

pyphi.distribution.marginal(repertoire, node_index)
Get the marginal distribution for a node.

pyphi.distribution.independent(repertoire)
Check whether the repertoire is independent.

pyphi.distribution.purview(repertoire)
The purview of the repertoire.

Parameters repertoire (np.ndarray) – A repertoire

Returns The purview that the repertoire was computed over.

Return type tuple[int]

pyphi.distribution.purview_size(repertoire)
Return the size of the purview of the repertoire.

Parameters repertoire (np.ndarray) – A repertoire

Returns The size of purview that the repertoire was computed over.

Return type int

86 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

pyphi.distribution.repertoire_shape(purview, N)
Return the shape a repertoire.

Parameters
• purview (tuple[int]) – The purview over which the repertoire is computed.

• N (int) – The number of elements in the system.

Returns The shape of the repertoire. Purview nodes have two dimensions and non-purview nodes
are collapsed to a unitary dimension.

Return type list[int]

Example

>>> purview = (0, 2)
>>> N = 3
>>> repertoire_shape(purview, N)
[2, 1, 2]

pyphi.distribution.flatten(repertoire, big_endian=False)
Flatten a repertoire, removing empty dimensions.

By default, the flattened repertoire is returned in little-endian order.

Parameters repertoire (np.ndarray or None) – A repertoire.

Keyword Arguments big_endian (boolean) – If True, flatten the repertoire in big-endian order.

Returns The flattened repertoire.

Return type np.ndarray

pyphi.distribution.max_entropy_distribution(node_indices, number_of_nodes)
Return the maximum entropy distribution over a set of nodes.

This is different from the network’s uniform distribution because nodes outside node_indices are fixed and
treated as if they have only 1 state.

Parameters
• node_indices (tuple[int]) – The set of node indices over which to take the distribution.

• number_of_nodes (int) – The total number of nodes in the network.

Returns The maximum entropy distribution over the set of nodes.

Return type np.ndarray

1.36 examples

Example networks and subsystems to go along with the documentation.

pyphi.examples.basic_network(cm=False)
A 3-node network of logic gates.

Diagram:

1.36. examples 87

PyPhi Documentation, Release v1.2.1

+~~~~~~~~+
+~~~~>| A |<~~~~+
	(OR) +~~~+
+~~~~~~~~+	
v	

+~+~~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
| (COPY) +~~~~~~>| (XOR) |
+~~~~~~~~+ +~~~~~~~+

TPM:

Previous state Current state
A, B, C A, B, C
0, 0, 0 0, 0, 0
1, 0, 0 0, 0, 1
0, 1, 0 1, 0, 1
1, 1, 0 1, 0, 0
0, 0, 1 1, 1, 0
1, 0, 1 1, 1, 1
0, 1, 1 1, 1, 1
1, 1, 1 1, 1, 0

Connectivity matrix:

. A B C
A 0 0 1
B 1 0 1
C 1 1 0

Note: [𝐶𝑀]𝑖,𝑗 = 1 means that there is a directed edge (𝑖, 𝑗) from node 𝑖 to node 𝑗 and [𝐶𝑀]𝑖,𝑗 = 0 means
there is no edge from 𝑖 to 𝑗.

pyphi.examples.basic_state()
The state of nodes in basic_network().

pyphi.examples.basic_subsystem()
A subsystem containing all the nodes of the basic_network().

pyphi.examples.basic_noisy_selfloop_network()
Based on the basic_network, but with added selfloops and noisy edges.

Nodes perform deterministic functions of their inputs, but those inputs may be flipped (i.e. what should be a 0
becomes a 1, and vice versa) with probability epsilon (eps = 0.1 here).

Diagram:

+~~+
| v

+~~~~~~~~+
+~~~~>| A |<~~~~+

(continues on next page)

88 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

(continued from previous page)

	(OR) +~~~+
+~~~~~~~~+	
v	

+~+~~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |

+>| (COPY) +~~~~~~>| (XOR) |<+
| +~~~~~~~~+ +~~~~~~~+ |
| | | |
+~~~+ +~~~+

pyphi.examples.basic_noisy_selfloop_subsystem()
A subsystem containing all the nodes of the basic_noisy_selfloop_network().

pyphi.examples.residue_network()
The network for the residue example.

Current and previous state are all nodes OFF.

Diagram:

+~~~~~~~+ +~~~~~~~+
| A | | B |

+~~>| (AND) | | (AND) |<~~+
| +~~~~~~~+ +~~~~~~~+ |
| ^ ^ |
| | | |
| +~~~~~+ +~~~~~+ |
| | | |

+~~~+~~~+ +~+~~~+~+ +~~~+~~~+
| C | | D | | E |
| | | | | |
+~~~~~~~+ +~~~~~~~+ +~~~~~~~+

Connectivity matrix:

. A B C D E
A 0 0 0 0 0
B 0 0 0 0 0
C 1 0 0 0 0
D 1 1 0 0 0
E 0 1 0 0 0

pyphi.examples.residue_subsystem()
The subsystem containing all the nodes of the residue_network().

pyphi.examples.xor_network()
A fully connected system of three XOR gates. In the state (0, 0, 0), none of the elementary mechanisms exist.

Diagram:

+~~~~~~~+ +~~~~~~~+
| A +<~~~~~~+ B |
| (XOR) +~~~~~~>| (XOR) |

(continues on next page)

1.36. examples 89

PyPhi Documentation, Release v1.2.1

(continued from previous page)

+~+~~~~~+ +~~~~~+~+
| ^ ^ |
| | +~~~~~~~+ | |
| +~~~+ C +~~~+ |
+~~~~>| (XOR) +<~~~~+

+~~~~~~~+

Connectivity matrix:

. A B C
A 0 1 1
B 1 0 1
C 1 1 0

pyphi.examples.xor_subsystem()
The subsystem containing all the nodes of the xor_network().

pyphi.examples.cond_depend_tpm()
A system of two general logic gates A and B such if they are in the same state they stay the same, but if they are
in different states, they flip with probability 50%.

Diagram:

+~~~~~+ +~~~~~+
| A |<~~~~~~~~+ B |
| +~~~~~~~~>| |
+~~~~~+ +~~~~~+

TPM:

(0, 0) (1, 0) (0, 1) (1, 1)
(0, 0) 1.0 0.0 0.0 0.0
(1, 0) 0.0 0.5 0.5 0.0
(0, 1) 0.0 0.5 0.5 0.0
(1, 1) 0.0 0.0 0.0 1.0

Connectivity matrix:

. A B
A 0 1
B 1 0

pyphi.examples.cond_independ_tpm()
A system of three general logic gates A, B and C such that: if A and B are in the same state then they stay the
same; if they are in different states, they flip if C is ON and stay the same if C is OFF; and C is ON 50% of the
time, independent of the previous state.

Diagram:

+~~~~~+ +~~~~~+
| A +~~~~~~~~>| B |
| |<~~~~~~~~+ |

(continues on next page)

90 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

(continued from previous page)

+~+~~~+ +~~~+~+
| ^ ^ |
| | +~~~~~+ | |
| ~~~~+ C +~~~+ |
+~~~~>| |<~~~~+

+~~~~~+

TPM:

(0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)
(0, 0, 0) 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0
(1, 0, 0) 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0
(0, 1, 0) 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0
(1, 1, 0) 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5
(0, 0, 1) 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0
(1, 0, 1) 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0
(0, 1, 1) 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0
(1, 1, 1) 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5

Connectivity matrix:

. A B C
A 0 1 0
B 1 0 0
C 1 1 0

pyphi.examples.propagation_delay_network()
A version of the primary example from the IIT 3.0 paper with deterministic COPY gates on each connection.
These copy gates essentially function as propagation delays on the signal between OR, AND and XOR gates
from the original system.

The current and previous states of the network are also selected to mimic the corresponding states from the IIT
3.0 paper.

Diagram:

+----------+
+------------------+ C (COPY) +<----------------+
v +----------+ |

+-------+-+ +-+-------+
| | +----------+ | |
| A (OR) +--------------->+ B (COPY) +-------------->+ D (XOR) |
| | +----------+ | |
+-+-----+-+ +-+-----+-+
| ^ ^ |
| | | |
| | +----------+ +----------+ | |
| +---+ H (COPY) +<----+ +---->+ F (COPY) +---+ |
| +----------+ | | +----------+ |
| | | |
| +-+-----+-+ |
| +----------+ | | +----------+ |

(continues on next page)

1.36. examples 91

PyPhi Documentation, Release v1.2.1

(continued from previous page)

+-------->+ I (COPY) +-->| G (AND) |<--+ E (COPY) +<--------+
+----------+ | | +----------+

+---------+

Connectivity matrix:

. A B C D E F G H I
A 0 1 0 0 0 0 0 0 1
B 0 0 0 1 0 0 0 0 0
C 1 0 0 0 0 0 0 0 0
D 0 0 1 0 1 0 0 0 0
E 0 0 0 0 0 0 1 0 0
F 0 0 0 1 0 0 0 0 0
G 0 0 0 0 0 1 0 1 0
H 1 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 1 0 0

States:

In the IIT 3.0 paper example, the previous state of the system has only the XOR gate ON. For the propagation
delay network, this corresponds to a state of (0, 0, 0, 1, 0, 0, 0, 0, 0).

The current state of the IIT 3.0 example has only the OR gate ON. By advancing the propagation delay system
two time steps, the current state (1, 0, 0, 0, 0, 0, 0, 0, 0) is achieved, with corresponding previous
state (0, 0, 1, 0, 1, 0, 0, 0, 0).

pyphi.examples.macro_network()
A network of micro elements which has greater integrated information after coarse graining to a macro scale.

pyphi.examples.macro_subsystem()
A subsystem containing all the nodes of macro_network().

pyphi.examples.blackbox_network()
A micro-network to demonstrate blackboxing.

Diagram:

+----------+
+-------------------->+ A (COPY) + <---------------+
| +----------+ |
| +----------+ |
| +-----------+ B (COPY) + <-------------+ |
v v +----------+ | |

+-+-----+-+ +-+-----+-+
C (AND)		F (AND)
+-+-----+-+ +-+-----+-+		
	^ ^	
	+----------+	
+---------> + D (COPY) +---------------+		
+----------+		
+----------+		
+-------------------> + E (COPY) +-----------------+

+----------+

92 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Connectivity Matrix:

. A B C D E F
A 0 0 1 0 0 0
B 0 0 1 0 0 0
C 0 0 0 1 1 0
D 0 0 0 0 0 1
E 0 0 0 0 0 1
F 1 1 0 0 0 0

In the documentation example, the state is (0, 0, 0, 0, 0, 0).

pyphi.examples.rule110_network()
A network of three elements which follows the logic of the Rule 110 cellular automaton with current and previous
state (0, 0, 0).

pyphi.examples.rule154_network()
A network of three elements which follows the logic of the Rule 154 cellular automaton.

pyphi.examples.fig1a()
The network shown in Figure 1A of the 2014 IIT 3.0 paper.

pyphi.examples.fig3a()
The network shown in Figure 3A of the 2014 IIT 3.0 paper.

pyphi.examples.fig3b()
The network shown in Figure 3B of the 2014 IIT 3.0 paper.

pyphi.examples.fig4()
The network shown in Figure 4 of the 2014 IIT 3.0 paper.

Diagram:

+~~~~~~~+
+~~~~>| A |<~~~~+
| +~~~+ (OR) +~~~+ |
| | +~~~~~~~+ | |
| | | |
| v v |

+~+~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
| (AND) +~~~~~~>| (XOR) |
+~~~~~~~+ +~~~~~~~+

pyphi.examples.fig5a()
The network shown in Figure 5A of the 2014 IIT 3.0 paper.

Diagram:

+~~~~~~~+
+~~~~>| A |<~~~~+
| | (AND) | |
| +~~~~~~~+ |
| |

+~~+~~~~~+ +~~~~~+~~+
| B |<~~~~~~+ C |

(continues on next page)

1.36. examples 93

PyPhi Documentation, Release v1.2.1

(continued from previous page)

| (COPY) +~~~~~~>| (COPY) |
+~~~~~~~~+ +~~~~~~~~+

pyphi.examples.fig5b()
The network shown in Figure 5B of the 2014 IIT 3.0 paper.

Diagram:

+~~~~~~~+
+~~~~+ A +~~~~+
| | (AND) | |
| +~~~~~~~+ |
v v

+~~~~~~~~+ +~~~~~~~~+
| B |<~~~~~~+ C |
| (COPY) +~~~~~~>| (COPY) |
+~~~~~~~~+ +~~~~~~~~+

pyphi.examples.fig6()
The network shown in Figure 4 of the 2014 IIT 3.0 paper.

Diagram:

+~~~~~~~+
+~~~~>| A |<~~~~+
| +~~~+ (OR) +~~~+ |
| | +~~~~~~~+ | |
| | | |
| v v |

+~+~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
| (AND) +~~~~~~>| (XOR) |
+~~~~~~~+ +~~~~~~~+

pyphi.examples.fig8()
The network shown in Figure 4 of the 2014 IIT 3.0 paper.

Diagram:

+~~~~~~~+
+~~~~>| A |<~~~~+
| +~~~+ (OR) +~~~+ |
| | +~~~~~~~+ | |
| | | |
| v v |

+~+~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
| (AND) +~~~~~~>| (XOR) |
+~~~~~~~+ +~~~~~~~+

pyphi.examples.fig9()
The network shown in Figure 4 of the 2014 IIT 3.0 paper.

Diagram:

94 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

+~~~~~~~+
+~~~~>| A |<~~~~+
| +~~~+ (OR) +~~~+ |
| | +~~~~~~~+ | |
| | | |
| v v |

+~+~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
| (AND) +~~~~~~>| (XOR) |
+~~~~~~~+ +~~~~~~~+

pyphi.examples.fig10()
The network shown in Figure 4 of the 2014 IIT 3.0 paper.

Diagram:

+~~~~~~~+
+~~~~>| A |<~~~~+
| +~~~+ (OR) +~~~+ |
| | +~~~~~~~+ | |
| | | |
| v v |

+~+~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
| (AND) +~~~~~~>| (XOR) |
+~~~~~~~+ +~~~~~~~+

pyphi.examples.fig14()
The network shown in Figure 1A of the 2014 IIT 3.0 paper.

pyphi.examples.fig16()
The network shown in Figure 5B of the 2014 IIT 3.0 paper.

pyphi.examples.actual_causation()
The actual causation example network, consisting of an OR and AND gate with self-loops.

pyphi.examples.disjunction_conjunction_network()
The disjunction-conjunction example from Actual Causation Figure 7.

A network of four elements, one output D with three inputs A B C. The output turns ON if A AND B are ON or
if C is ON.

pyphi.examples.prevention()
The Transition for the prevention example from Actual Causation Figure 5D.

1.37 exceptions

PyPhi exceptions.

exception pyphi.exceptions.StateUnreachableError(state)
The current state cannot be reached from any previous state.

exception pyphi.exceptions.ConditionallyDependentError
The TPM is conditionally dependent.

1.37. exceptions 95

PyPhi Documentation, Release v1.2.1

exception pyphi.exceptions.JSONVersionError
JSON was serialized with a different version of PyPhi.

exception pyphi.exceptions.WrongDirectionError
The wrong direction was provided.

1.38 jsonify

PyPhi- and NumPy-aware JSON serialization.

To be properly serialized and deserialized, PyPhi objects must implement a to_json method which returns a dictio-
nary of attribute names and attribute values. These attributes should be the names of arguments passed to the object
constructor. If the constructor takes additional, fewer, or different arguments, the object needs to implement a cus-
tom classmethod called from_json that takes a Python dictionary as an argument and returns a PyPhi object. For
example:

class Phi:
def __init__(self, phi):

self.phi = phi

def to_json(self):
return {'phi': self.phi, 'twice_phi': 2 * self.phi}

@classmethod
def from_json(cls, json):

return Phi(json['phi'])

The object must also be added to jsonify._loadable_models.

The JSON encoder adds the name of the object and the current PyPhi version to the JSON stream. The JSON decoder
uses this metadata to recursively deserialize the stream to a nested PyPhi object structure. The decoder will raise an
exception if current PyPhi version doesn’t match the version in the JSON data.

pyphi.jsonify.jsonify(obj)
Return a JSON-encodable representation of an object, recursively using any available to_json methods, con-
verting NumPy arrays and datatypes to native lists and types along the way.

class pyphi.jsonify.PyPhiJSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, sort_keys=False, indent=None, separators=None,
default=None)

JSONEncoder that allows serializing PyPhi objects with jsonify.

Constructor for JSONEncoder, with sensible defaults.

If skipkeys is false, then it is a TypeError to attempt encoding of keys that are not str, int, float or None. If skipkeys
is True, such items are simply skipped.

If ensure_ascii is true, the output is guaranteed to be str objects with all incoming non-ASCII characters escaped.
If ensure_ascii is false, the output can contain non-ASCII characters.

If check_circular is true, then lists, dicts, and custom encoded objects will be checked for circular references
during encoding to prevent an infinite recursion (which would cause an OverflowError). Otherwise, no such
check takes place.

If allow_nan is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON spec-
ification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will be a
ValueError to encode such floats.

96 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

If sort_keys is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to
ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with
that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (’, ‘, ‘: ‘) if indent
is None and (‘,’, ‘: ‘) otherwise. To get the most compact JSON representation, you should specify (‘,’, ‘:’) to
eliminate whitespace.

If specified, default is a function that gets called for objects that can’t otherwise be serialized. It should return a
JSON encodable version of the object or raise a TypeError.

encode(obj)
Encode the output of jsonify with the default encoder.

iterencode(obj, **kwargs)
Analog to encode used by json.dump.

pyphi.jsonify.dumps(obj, **user_kwargs)
Serialize obj as JSON-formatted stream.

pyphi.jsonify.dump(obj, fp, **user_kwargs)
Serialize obj as a JSON-formatted stream and write to fp (a .write()-supporting file-like object.

class pyphi.jsonify.PyPhiJSONDecoder(*args, **kwargs)
Extension of the default encoder which automatically deserializes PyPhi JSON to the appropriate model classes.

object_hook, if specified, will be called with the result of every JSON object decoded and its return value
will be used in place of the given dict. This can be used to provide custom deserializations (e.g. to support
JSON-RPC class hinting).

object_pairs_hook, if specified will be called with the result of every JSON object decoded with an ordered
list of pairs. The return value of object_pairs_hook will be used instead of the dict. This feature can be
used to implement custom decoders. If object_hook is also defined, the object_pairs_hook takes priority.

parse_float, if specified, will be called with the string of every JSON float to be decoded. By default this
is equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g. deci-
mal.Decimal).

parse_int, if specified, will be called with the string of every JSON int to be decoded. By default this is
equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g. float).

parse_constant, if specified, will be called with one of the following strings: -Infinity, Infinity, NaN. This can
be used to raise an exception if invalid JSON numbers are encountered.

If strict is false (true is the default), then control characters will be allowed inside strings. Control characters
in this context are those with character codes in the 0-31 range, including '\t' (tab), '\n', '\r' and '\0'.

pyphi.jsonify.loads(string)
Deserialize a JSON string to a Python object.

pyphi.jsonify.load(fp)
Deserialize a JSON stream to a Python object.

1.38. jsonify 97

PyPhi Documentation, Release v1.2.1

1.39 macro

Methods for coarse-graining systems to different levels of spatial analysis.

pyphi.macro.reindex(indices)
Generate a new set of node indices, the size of indices.

pyphi.macro.rebuild_system_tpm(node_tpms)
Reconstruct the network TPM from a collection of node TPMs.

pyphi.macro.remove_singleton_dimensions(tpm)
Remove singleton dimensions from the TPM.

Singleton dimensions are created by conditioning on a set of elements. This removes those elements from the
TPM, leaving a TPM that only describes the non-conditioned elements.

Note that indices used in the original TPM must be reindexed for the smaller TPM.

pyphi.macro.run_tpm(system, steps, blackbox)
Iterate the TPM for the given number of timesteps.

Returns tpm * (noise_tpm^(t-1))

Return type np.ndarray

class pyphi.macro.SystemAttrs(tpm, cm, node_indices, state)
An immutable container that holds all the attributes of a subsystem.

Versions of this object are passed down the steps of the micro-to-macro pipeline.

Create new instance of SystemAttrs(tpm, cm, node_indices, state)

property node_labels
Return the labels for macro nodes.

property nodes

static pack(system)

apply(system)

class pyphi.macro.MacroSubsystem(network, state, nodes=None, cut=None, mice_cache=None,
time_scale=1, blackbox=None, coarse_grain=None)

A subclass of Subsystem implementing macro computations.

This subsystem performs blackboxing and coarse-graining of elements.

Unlike Subsystem , whose TPM has dimensionality equal to that of the subsystem’s network and represents
nodes external to the system using singleton dimensions, MacroSubsystem squeezes the TPM to remove these
singletons. As a result, the node indices of the system are also squeezed to 0..n so they properly index the TPM,
and the state-tuple is reduced to the size of the system.

After each macro update (temporal blackboxing, spatial blackboxing, and spatial coarse-graining) the TPM, CM,
nodes, and state are updated so that they correctly represent the updated system.

property cut_indices
The indices of this system to be cut for Φ computations.

For macro computations the cut is applied to the underlying micro-system.

property cut_mechanisms
The mechanisms of this system that are currently cut.

Note that although cut_indices returns micro indices, this returns macro mechanisms.

98 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Yields tuple[int]

property cut_node_labels
Labels for the nodes that can be cut.

These are the labels of the micro elements.

apply_cut(cut)
Return a cut version of this MacroSubsystem .

Parameters cut (Cut) – The cut to apply to this MacroSubsystem .

Returns The cut version of this MacroSubsystem .

Return type MacroSubsystem

potential_purviews(direction, mechanism, purviews=False)
Override Subsystem implementation using Network-level indices.

macro2micro(macro_indices)
Return all micro indices which compose the elements specified by macro_indices.

macro2blackbox_outputs(macro_indices)
Given a set of macro elements, return the blackbox output elements which compose these elements.

__eq__(other)
Two macro systems are equal if each underlying Subsystem is equal and all macro attributes are equal.

class pyphi.macro.CoarseGrain(partition, grouping)
Represents a coarse graining of a collection of nodes.

partition
The partition of micro-elements into macro-elements.

Type tuple[tuple]

grouping
The grouping of micro-states into macro-states.

Type tuple[tuple[tuple]]

Create new instance of CoarseGrain(partition, grouping)

property micro_indices
Indices of micro elements represented in this coarse-graining.

property macro_indices
Indices of macro elements of this coarse-graining.

reindex()
Re-index this coarse graining to use squeezed indices.

The output grouping is translated to use indices 0..n, where n is the number of micro indices in the coarse-
graining. Re-indexing does not effect the state grouping, which is already index-independent.

Returns A new CoarseGrain object, indexed from 0..n.

Return type CoarseGrain

1.39. macro 99

PyPhi Documentation, Release v1.2.1

Example

>>> partition = ((1, 2),)
>>> grouping = (((0,), (1, 2)),)
>>> coarse_grain = CoarseGrain(partition, grouping)
>>> coarse_grain.reindex()
CoarseGrain(partition=((0, 1),), grouping=(((0,), (1, 2)),))

macro_state(micro_state)
Translate a micro state to a macro state

Parameters micro_state (tuple[int]) – The state of the micro nodes in this coarse-graining.

Returns The state of the macro system, translated as specified by this coarse-graining.

Return type tuple[int]

Example

>>> coarse_grain = CoarseGrain(((1, 2),), (((0,), (1, 2)),))
>>> coarse_grain.macro_state((0, 0))
(0,)
>>> coarse_grain.macro_state((1, 0))
(1,)
>>> coarse_grain.macro_state((1, 1))
(1,)

make_mapping()
Return a mapping from micro-state to the macro-states based on the partition and state grouping of this
coarse-grain.

Returns A mapping from micro-states to macro-states. The 𝑖th entry in the mapping is the macro-
state corresponding to the 𝑖th micro-state.

Return type (nd.ndarray)

macro_tpm_sbs(state_by_state_micro_tpm)
Create a state-by-state coarse-grained macro TPM.

Parameters micro_tpm (nd.array) – The state-by-state TPM of the micro-system.

Returns The state-by-state TPM of the macro-system.

Return type np.ndarray

macro_tpm(micro_tpm, check_independence=True)
Create a coarse-grained macro TPM.

Parameters
• micro_tpm (nd.array) – The TPM of the micro-system.

• check_independence (bool) – Whether to check that the macro TPM is conditionally
independent.

Raises ConditionallyDependentError – If check_independence is True and the macro
TPM is not conditionally independent.

Returns The state-by-node TPM of the macro-system.

Return type np.ndarray

100 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

class pyphi.macro.Blackbox(partition, output_indices)
Class representing a blackboxing of a system.

partition
The partition of nodes into boxes.

Type tuple[tuple[int]]

output_indices
Outputs of the blackboxes.

Type tuple[int]

Create new instance of Blackbox(partition, output_indices)

property hidden_indices
All elements hidden inside the blackboxes.

property micro_indices
Indices of micro-elements in this blackboxing.

property macro_indices
Fresh indices of macro-elements of the blackboxing.

outputs_of(partition_index)
The outputs of the partition at partition_index.

Note that this returns a tuple of element indices, since coarse- grained blackboxes may have multiple out-
puts.

reindex()
Squeeze the indices of this blackboxing to 0..n.

Returns a new, reindexed Blackbox.

Return type Blackbox

Example

>>> partition = ((3,), (2, 4))
>>> output_indices = (2, 3)
>>> blackbox = Blackbox(partition, output_indices)
>>> blackbox.reindex()
Blackbox(partition=((1,), (0, 2)), output_indices=(0, 1))

macro_state(micro_state)
Compute the macro-state of this blackbox.

This is just the state of the blackbox’s output indices.

Parameters micro_state (tuple[int]) – The state of the micro-elements in the blackbox.

Returns The state of the output indices.

Return type tuple[int]

in_same_box(a, b)
Return True if nodes a and b` are in the same box.

hidden_from(a, b)
Return True if a is hidden in a different box than b.

1.39. macro 101

PyPhi Documentation, Release v1.2.1

pyphi.macro.all_partitions(indices)
Return a list of all possible coarse grains of a network.

Parameters indices (tuple[int]) – The micro indices to partition.

Yields tuple[tuple] – A possible partition. Each element of the tuple is a tuple of micro-elements
which correspond to macro-elements.

pyphi.macro.all_groupings(partition)
Return all possible groupings of states for a particular coarse graining (partition) of a network.

Parameters partition (tuple[tuple]) – A partition of micro-elements into macro elements.

Yields tuple[tuple[tuple]] – A grouping of micro-states into macro states of system.

TODO: document exactly how to interpret the grouping.

pyphi.macro.all_coarse_grains(indices)
Generator over all possible CoarseGrain of these indices.

Parameters indices (tuple[int]) – Node indices to coarse grain.

Yields CoarseGrain – The next CoarseGrain for indices.

pyphi.macro.all_coarse_grains_for_blackbox(blackbox)
Generator over all CoarseGrain for the given blackbox.

If a box has multiple outputs, those outputs are partitioned into the same coarse-grain macro-element.

pyphi.macro.all_blackboxes(indices)
Generator over all possible blackboxings of these indices.

Parameters indices (tuple[int]) – Nodes to blackbox.

Yields Blackbox – The next Blackbox of indices.

class pyphi.macro.MacroNetwork(network, system, macro_phi, micro_phi, coarse_grain, time_scale=1,
blackbox=None)

A coarse-grained network of nodes.

See the Emergence (coarse-graining and blackboxing) example in the documentation for more information.

network
The network object of the macro-system.

Type Network

phi
The Φ of the network’s major complex.

Type float

micro_network
The network object of the corresponding micro system.

Type Network

micro_phi
The Φ of the major complex of the corresponding micro-system.

Type float

coarse_grain
The coarse-graining of micro-elements into macro-elements.

Type CoarseGrain

102 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

time_scale
The time scale the macro-network run over.

Type int

blackbox
The blackboxing of micro elements in the network.

Type Blackbox

emergence
The difference between the Φ of the macro- and the micro-system.

Type float

property emergence
Difference between the Φ of the macro and micro systems

pyphi.macro.coarse_graining(network, state, internal_indices)
Find the maximal coarse-graining of a micro-system.

Parameters
• network (Network) – The network in question.

• state (tuple[int]) – The state of the network.

• internal_indices (tuple[int]) – Nodes in the micro-system.

Returns The phi-value of the maximal CoarseGrain.

Return type tuple[int, CoarseGrain]

pyphi.macro.all_macro_systems(network, state, do_blackbox=False, do_coarse_grain=False,
time_scales=None)

Generator over all possible macro-systems for the network.

pyphi.macro.emergence(network, state, do_blackbox=False, do_coarse_grain=True, time_scales=None)
Check for the emergence of a micro-system into a macro-system.

Checks all possible blackboxings and coarse-grainings of a system to find the spatial scale with maximum inte-
grated information.

Use the do_blackbox and do_coarse_grain args to specifiy whether to use blackboxing, coarse-graining, or
both. The default is to just coarse-grain the system.

Parameters
• network (Network) – The network of the micro-system under investigation.

• state (tuple[int]) – The state of the network.

• do_blackbox (bool) – Set to True to enable blackboxing. Defaults to False.

• do_coarse_grain (bool) – Set to True to enable coarse-graining. Defaults to True.

• time_scales (list[int]) – List of all time steps over which to check for emergence.

Returns The maximal macro-system generated from the micro-system.

Return type MacroNetwork

pyphi.macro.phi_by_grain(network, state)

pyphi.macro.effective_info(network)
Return the effective information of the given network.

1.39. macro 103

PyPhi Documentation, Release v1.2.1

Note: For details, see:

Hoel, Erik P., Larissa Albantakis, and Giulio Tononi. “Quantifying causal emergence shows that macro can beat
micro.” Proceedings of the National Academy of Sciences 110.49 (2013): 19790-19795.

Available online: doi: 10.1073/pnas.1314922110.

1.40 models

See pyphi.models.subsystem , pyphi.models.mechanism , and pyphi.models.cuts for documentation.

pyphi.models.Account
Alias for pyphi.models.actual_causation.Account.

pyphi.models.AcRepertoireIrreducibilityAnalysis
Alias for pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis.

pyphi.models.AcSystemIrreducibilityAnalysis
Alias for pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis.

pyphi.models.ActualCut
Alias for pyphi.models.cuts.ActualCut.

pyphi.models.Bipartition
Alias for pyphi.models.cuts.Bipartition.

pyphi.models.CausalLink
Alias for pyphi.models.actual_causation.CausalLink .

pyphi.models.CauseEffectStructure
Alias for pyphi.models.subsystem.CauseEffectStructure.

pyphi.models.Concept
Alias for pyphi.models.mechanism.Concept.

pyphi.models.Cut
Alias for pyphi.models.cuts.Cut.

pyphi.models.DirectedAccount
Alias for pyphi.models.actual_causation.DirectedAccount.

pyphi.models.MaximallyIrreducibleCause
Alias for pyphi.models.mechanism.MaximallyIrreducibleCause.

pyphi.models.MaximallyIrreducibleEffect
Alias for pyphi.models.mechanism.MaximallyIrreducibleEffect.

pyphi.models.MaximallyIrreducibleCauseOrEffect
Alias for pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect.

pyphi.models.Part
Alias for pyphi.models.cuts.Part.

pyphi.models.RepertoireIrreducibilityAnalysis
Alias for pyphi.models.mechanism.RepertoireIrreducibilityAnalysis.

pyphi.models.SystemIrreducibilityAnalysis
Alias for pyphi.models.subsystem.SystemIrreducibilityAnalysis.

104 Chapter 1. Installation

http://www.pnas.org/content/110/49/19790.abstract

PyPhi Documentation, Release v1.2.1

1.41 models.actual_causation

Objects that represent structures used in actual causation.

pyphi.models.actual_causation.greater_than_zero(alpha)
Return True if alpha is greater than zero, accounting for numerical errors.

class pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis(alpha, state, direction,
mechanism, purview,
partition, probability,
partitioned_probability,
node_labels=None)

A minimum information partition for ac_coef calculation.

These can be compared with the built-in Python comparison operators (<, >, etc.). First, 𝛼 values are compared.
Then, if these are equal up to PRECISION, the size of the mechanism is compared.

alpha
This is the difference between the mechanism’s unpartitioned and partitioned actual probability.

Type float

state
state of system in specified direction (cause, effect)

Type tuple[int]

direction
The temporal direction specifiying whether this analysis should be calculated with cause or effect reper-
toires.

Type str

mechanism
The mechanism to analyze.

Type tuple[int]

purview
The purview over which the unpartitioned actual probability differs the least from the actual probability of
the partition.

Type tuple[int]

partition
The partition that makes the least difference to the mechanism’s repertoire.

Type tuple[Part, Part]

probability
The probability of the state in the previous/next timestep.

Type float

partitioned_probability
The probability of the state in the partitioned repertoire.

Type float

unorderable_unless_eq = ['direction']

order_by()
Return a list of values to compare for ordering.

1.41. models.actual_causation 105

PyPhi Documentation, Release v1.2.1

The first value in the list has the greatest priority; if the first objects are equal the second object is compared,
etc.

__bool__()
An AcRepertoireIrreducibilityAnalysis is True if it has 𝛼 > 0.

property phi
Alias for 𝛼 for PyPhi utility functions.

to_json()
Return a JSON-serializable representation.

class pyphi.models.actual_causation.CausalLink(ria)
A maximally irreducible actual cause or effect.

These can be compared with the built-in Python comparison operators (<, >, etc.). First, 𝛼 values are compared.
Then, if these are equal up to PRECISION, the size of the mechanism is compared.

property alpha
float: The difference between the mechanism’s unpartitioned and partitioned actual probabilities.

property phi
Alias for 𝛼 for PyPhi utility functions.

property direction
Direction: Either CAUSE or EFFECT.

property mechanism
list[int]: The mechanism for which the action is evaluated.

property purview
list[int]: The purview over which this mechanism’s 𝛼 is maximal.

property ria
AcRepertoireIrreducibilityAnalysis: The irreducibility analysis for this mechanism.

property node_labels

unorderable_unless_eq = ['direction']

order_by()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared,
etc.

__bool__()
An CausalLink is True if 𝛼 > 0.

to_json()
Return a JSON-serializable representation.

class pyphi.models.actual_causation.Event(actual_cause, actual_effect)
A mechanism which has both an actual cause and an actual effect.

actual_cause
The actual cause of the mechanism.

Type CausalLink

actual_effect
The actual effect of the mechanism.

Type CausalLink

106 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Create new instance of Event(actual_cause, actual_effect)

property mechanism
The mechanism of the event.

class pyphi.models.actual_causation.Account(causal_links)
The set of CausalLink with 𝛼 > 0. This includes both actual causes and actual effects.

property irreducible_causes
The set of irreducible causes in this Account.

property irreducible_effects
The set of irreducible effects in this Account.

to_json()

classmethod from_json(dct)

class pyphi.models.actual_causation.DirectedAccount(causal_links)
The set of CausalLink with 𝛼 > 0 for one direction of a transition.

class pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis(alpha=None,
direction=None,
account=None,
partitioned_account=None,
transition=None, cut=None)

An analysis of transition-level irreducibility (𝒜).

Contains the 𝒜 value of the Transition, the causal account, and all the intermediate results obtained in the
course of computing them.

alpha
The 𝒜 value for the transition when taken against this analysis, i.e. the difference between the unpartitioned
account and this analysis’s partitioned account.

Type float

account
The account of the whole transition.

Type Account

partitioned_account
The account of the partitioned transition.

Type Account

transition
The transition this analysis was calculated for.

Type Transition

cut
The minimal partition.

Type ActualCut

property before_state
Return the actual previous state of the Transition.

property after_state
Return the actual current state of the Transition.

unorderable_unless_eq = ['direction']

1.41. models.actual_causation 107

PyPhi Documentation, Release v1.2.1

order_by()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared,
etc.

__bool__()
An AcSystemIrreducibilityAnalysis is True if it has 𝒜 > 0.

to_json()

1.42 models.cuts

Objects that represent partitions of sets of nodes.

class pyphi.models.cuts.NullCut(indices, node_labels=None)
The cut that does nothing.

property is_null
This is the only cut where is_null == True.

property indices
Indices of the cut.

cut_matrix(n)
Return a matrix of zeros.

to_json()

class pyphi.models.cuts.Cut(from_nodes, to_nodes, node_labels=None)
Represents a unidirectional cut.

from_nodes
Connections from this group of nodes to those in to_nodes are from_nodes.

Type tuple[int]

to_nodes
Connections to this group of nodes from those in from_nodes are from_nodes.

Type tuple[int]

from_nodes

to_nodes

node_labels

property indices
Indices of this cut.

cut_matrix(n)
Compute the cut matrix for this cut.

The cut matrix is a square matrix which represents connections severed by the cut.

Parameters n (int) – The size of the network.

108 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Example

>>> cut = Cut((1,), (2,))
>>> cut.cut_matrix(3)
array([[0., 0., 0.],

[0., 0., 1.],
[0., 0., 0.]])

to_json()
Return a JSON-serializable representation.

class pyphi.models.cuts.KCut(direction, partition, node_labels=None)
A cut that severs all connections between parts of a K-partition.

property indices
Indices of this cut.

cut_matrix(n)
The matrix of connections that are severed by this cut.

to_json()

class pyphi.models.cuts.ActualCut(direction, partition, node_labels=None)
Represents an cut for a Transition.

property indices
Indices of this cut.

class pyphi.models.cuts.Part(mechanism, purview)
Represents one part of a Bipartition.

mechanism
The nodes in the mechanism for this part.

Type tuple[int]

purview
The nodes in the mechanism for this part.

Type tuple[int]

Example

When calculating 𝜙 of a 3-node subsystem, we partition the system in the following way:

mechanism: A,C B
×

purview: B A,C

This class represents one term in the above product.

Create new instance of Part(mechanism, purview)

to_json()
Return a JSON-serializable representation.

class pyphi.models.cuts.KPartition(*parts, node_labels=None)
A partition with an arbitrary number of parts.

parts

1.42. models.cuts 109

PyPhi Documentation, Release v1.2.1

node_labels

property mechanism
tuple[int]: The nodes of the mechanism in the partition.

property purview
tuple[int]: The nodes of the purview in the partition.

normalize()
Normalize the order of parts in the partition.

to_json()

classmethod from_json(dct)

class pyphi.models.cuts.Bipartition(*parts, node_labels=None)
A bipartition of a mechanism and purview.

part0
The first part of the partition.

Type Part

part1
The second part of the partition.

Type Part

to_json()
Return a JSON-serializable representation.

classmethod from_json(dct)

parts

node_labels

class pyphi.models.cuts.Tripartition(*parts, node_labels=None)
A partition with three parts.

parts

node_labels

1.43 models.mechanism

Mechanism-level objects.

class pyphi.models.mechanism.RepertoireIrreducibilityAnalysis(phi, direction, mechanism, purview,
partition, repertoire,
partitioned_repertoire,
node_labels=None)

An analysis of the irreducibility (𝜙) of a mechanism over a purview, for a given partition, in one temporal direc-
tion.

These can be compared with the built-in Python comparison operators (<, >, etc.). First, 𝜙 values are
compared. Then, if these are equal up to PRECISION, the size of the mechanism is compared (see the
PICK_SMALLEST_PURVIEW option in config.)

property phi
float: This is the difference between the mechanism’s unpartitioned and partitioned repertoires.

110 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

property direction
Direction: CAUSE or EFFECT.

property mechanism
tuple[int]: The mechanism that was analyzed.

property purview
tuple[int]: The purview over which the the mechanism was analyzed.

property partition
KPartition: The partition of the mechanism-purview pair that was analyzed.

property repertoire
np.ndarray: The repertoire of the mechanism over the purview.

property partitioned_repertoire
np.ndarray: The partitioned repertoire of the mechanism over the purview. This is the product of the
repertoires of each part of the partition.

property node_labels
NodeLabels for this system.

unorderable_unless_eq = ['direction']

order_by()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared,
etc.

__bool__()
A RepertoireIrreducibilityAnalysis is True if it has 𝜙 > 0.

to_json()

class pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect(ria)
A maximally irreducible cause or effect (MICE).

These can be compared with the built-in Python comparison operators (<, >, etc.). First, 𝜙 values are
compared. Then, if these are equal up to PRECISION, the size of the mechanism is compared (see the
PICK_SMALLEST_PURVIEW option in config.)

property phi
float: The difference between the mechanism’s unpartitioned and partitioned repertoires.

property direction
Direction: CAUSE or EFFECT.

property mechanism
list[int]: The mechanism for which the MICE is evaluated.

property purview
list[int]: The purview over which this mechanism’s 𝜙 is maximal.

property mip
KPartition: The partition that makes the least difference to the mechanism’s repertoire.

property repertoire
np.ndarray: The unpartitioned repertoire of the mechanism over the purview.

property partitioned_repertoire
np.ndarray: The partitioned repertoire of the mechanism over the purview.

1.43. models.mechanism 111

PyPhi Documentation, Release v1.2.1

property ria
RepertoireIrreducibilityAnalysis: The irreducibility analysis for this mechanism.

unorderable_unless_eq = ['direction']

order_by()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared,
etc.

to_json()

damaged_by_cut(subsystem)
Return True if this MICE is affected by the subsystem’s cut.

The cut affects the MICE if it either splits the MICE’s mechanism or splits the connections between the
purview and mechanism.

class pyphi.models.mechanism.MaximallyIrreducibleCause(ria)
A maximally irreducible cause (MIC).

These can be compared with the built-in Python comparison operators (<, >, etc.). First, 𝜙 values are
compared. Then, if these are equal up to PRECISION, the size of the mechanism is compared (see the
PICK_SMALLEST_PURVIEW option in config.)

property direction
Direction: CAUSE.

class pyphi.models.mechanism.MaximallyIrreducibleEffect(ria)
A maximally irreducible effect (MIE).

These can be compared with the built-in Python comparison operators (<, >, etc.). First, 𝜙 values are
compared. Then, if these are equal up to PRECISION, the size of the mechanism is compared (see the
PICK_SMALLEST_PURVIEW option in config.)

property direction
Direction: EFFECT.

class pyphi.models.mechanism.Concept(mechanism=None, cause=None, effect=None, subsystem=None,
time=None)

The maximally irreducible cause and effect specified by a mechanism.

These can be compared with the built-in Python comparison operators (<, >, etc.). First, 𝜙 values are compared.
Then, if these are equal up to PRECISION, the size of the mechanism is compared.

mechanism
The mechanism that the concept consists of.

Type tuple[int]

cause
The MaximallyIrreducibleCause representing the maximally-irreducible cause of this concept.

Type MaximallyIrreducibleCause

effect
The MaximallyIrreducibleEffect representing the maximally-irreducible effect of this concept.

Type MaximallyIrreducibleEffect

subsystem
This concept’s parent subsystem.

Type Subsystem

112 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

time
The number of seconds it took to calculate.

Type float

property phi
float: The size of the concept.

This is the minimum of the 𝜙 values of the concept’s MaximallyIrreducibleCause and
MaximallyIrreducibleEffect.

property cause_purview
tuple[int]: The cause purview.

property effect_purview
tuple[int]: The effect purview.

property cause_repertoire
np.ndarray: The cause repertoire.

property effect_repertoire
np.ndarray: The effect repertoire.

property mechanism_state
tuple(int): The state of this mechanism.

unorderable_unless_eq = ['subsystem']

order_by()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared,
etc.

__bool__()
A concept is True if 𝜙 > 0.

eq_repertoires(other)
Return whether this concept has the same repertoires as another.

Warning: This only checks if the cause and effect repertoires are equal as arrays; mechanisms,
purviews, or even the nodes that the mechanism and purview indices refer to, might be different.

emd_eq(other)
Return whether this concept is equal to another in the context of an EMD calculation.

expand_cause_repertoire(new_purview=None)
See expand_repertoire().

expand_effect_repertoire(new_purview=None)
See expand_repertoire().

expand_partitioned_cause_repertoire()
See expand_repertoire().

expand_partitioned_effect_repertoire()
See expand_repertoire().

to_json()
Return a JSON-serializable representation.

classmethod from_json(dct)

1.43. models.mechanism 113

PyPhi Documentation, Release v1.2.1

1.44 models.subsystem

Subsystem-level objects.

class pyphi.models.subsystem.CauseEffectStructure(concepts=(), subsystem=None, time=None)
A collection of concepts.

order_by()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared,
etc.

to_json()

property mechanisms
The mechanism of each concept.

property phis
The 𝜙 values of each concept.

property labeled_mechanisms
The labeled mechanism of each concept.

class pyphi.models.subsystem.SystemIrreducibilityAnalysis(phi=None, ces=None,
partitioned_ces=None, subsystem=None,
cut_subsystem=None, time=None)

An analysis of system irreducibility (Φ).

Contains the Φ value of the Subsystem , the cause-effect structure, and all the intermediate results obtained in
the course of computing them.

These can be compared with the built-in Python comparison operators (<, >, etc.). First, Φ values are compared.
Then, if these are equal up to PRECISION, the one with the larger subsystem is greater.

phi
The Φ value for the subsystem when taken against this analysis, i.e. the difference between the cause-effect
structure and the partitioned cause-effect structure for this analysis.

Type float

ces
The cause-effect structure of the whole subsystem.

Type CauseEffectStructure

partitioned_ces
The cause-effect structure when the subsystem is cut.

Type CauseEffectStructure

subsystem
The subsystem this analysis was calculated for.

Type Subsystem

cut_subsystem
The subsystem with the minimal cut applied.

Type Subsystem

time
The number of seconds it took to calculate.

114 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Type float

print(ces=True)
Print this SystemIrreducibilityAnalysis, optionally without cause-effect structures.

property small_phi_time
The number of seconds it took to calculate the CES.

property cut
The unidirectional cut that makes the least difference to the subsystem.

property network
The network the subsystem belongs to.

unorderable_unless_eq = ['network']

order_by()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared,
etc.

__bool__()
A SystemIrreducibilityAnalysis is True if it has Φ > 0.

to_json()
Return a JSON-serializable representation.

classmethod from_json(dct)

1.45 network

Represents the network of interest. This is the primary object of PyPhi and the context of all 𝜙 and Φ computation.

class pyphi.network.Network(tpm, cm=None, node_labels=None, purview_cache=None)
A network of nodes.

Represents the network under analysis and holds auxilary data about it.

Parameters tpm (np.ndarray) – The transition probability matrix of the network.

The TPM can be provided in any of three forms: state-by-state, state-by-node, or multidimen-
sional state-by-node form. In the state-by-node forms, row indices must follow the little-endian
convention (see Little-endian convention). In state-by-state form, column indices must also fol-
low the little-endian convention.

If the TPM is given in state-by-node form, it can be either 2-dimensional, so that tpm[i] gives
the probabilities of each node being ON if the previous state is encoded by 𝑖 according to the little-
endian convention, or in multidimensional form, so that tpm[(0, 0, 1)] gives the probabilities
of each node being ON if the previous state is 𝑁0 = 0, 𝑁1 = 0, 𝑁2 = 1.

The shape of the 2-dimensional form of a state-by-node TPM must be (s, n), and the shape
of the multidimensional form of the TPM must be [2] * n + [n], where s is the number of
states and n is the number of nodes in the network.

Keyword Arguments
• cm (np.ndarray) – A square binary adjacency matrix indicating the connections between

nodes in the network. cm[i][j] == 1 means that node 𝑖 is connected to node 𝑗 (see Con-
nectivity matrix conventions). If no connectivity matrix is given, PyPhi assumes that
every node is connected to every node (including itself).

1.45. network 115

PyPhi Documentation, Release v1.2.1

• node_labels (tuple[str] or NodeLabels) – Human-readable labels for each node in the
network.

Example

In a 3-node network, the_network.tpm[(0, 0, 1)] gives the transition probabilities for each node at 𝑡 given
that state at 𝑡− 1 was 𝑁0 = 0, 𝑁1 = 0, 𝑁2 = 1.

property tpm
np.ndarray: The network’s transition probability matrix, in multidimensional form.

property cm
np.ndarray: The network’s connectivity matrix.

A square binary adjacency matrix indicating the connections between nodes in the network.

property connectivity_matrix
np.ndarray: Alias for cm.

property causally_significant_nodes
See pyphi.connectivity.causally_significant_nodes().

property size
int: The number of nodes in the network.

property num_states
int: The number of possible states of the network.

property node_indices
tuple[int]: The indices of nodes in the network.

This is equivalent to tuple(range(network.size)).

property node_labels
tuple[str]: The labels of nodes in the network.

potential_purviews(direction, mechanism)
All purviews which are not clearly reducible for mechanism.

Parameters
• direction (Direction) – CAUSE or EFFECT.

• mechanism (tuple[int]) – The mechanism which all purviews are checked for reducibil-
ity over.

Returns All purviews which are irreducible over mechanism.

Return type list[tuple[int]]

__len__()
int: The number of nodes in the network.

__eq__(other)
Return whether this network equals the other object.

Networks are equal if they have the same TPM and CM.

to_json()
Return a JSON-serializable representation.

classmethod from_json(json_dict)
Return a Network object from a JSON dictionary representation.

116 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

pyphi.network.irreducible_purviews(cm, direction, mechanism, purviews)
Return all purviews which are irreducible for the mechanism.

Parameters
• cm (np.ndarray) – An 𝑁 ×𝑁 connectivity matrix.

• direction (Direction) – CAUSE or EFFECT.

• purviews (list[tuple[int]]) – The purviews to check.

• mechanism (tuple[int]) – The mechanism in question.

Returns All purviews in purviews which are not reducible over mechanism.

Return type list[tuple[int]]

Raises ValueError – If direction is invalid.

pyphi.network.from_json(filename)
Convert a JSON network to a PyPhi network.

Parameters filename (str) – A path to a JSON file representing a network.

Returns The corresponding PyPhi network object.

Return type Network

1.46 node

Represents a node in a network. Each node has a unique index, its position in the network’s list of nodes.

class pyphi.node.Node(tpm, cm, index, state, node_labels)
A node in a subsystem.

Parameters
• tpm (np.ndarray) – The TPM of the subsystem.

• cm (np.ndarray) – The CM of the subsystem.

• index (int) – The node’s index in the network.

• state (int) – The state of this node.

• node_labels (NodeLabels) – Labels for these nodes.

tpm
The node TPM is an array with shape (2,)*(n + 1), where n is the size of the Network . The first n
dimensions correspond to each node in the system. Dimensions corresponding to nodes that provide input
to this node are of size 2, while those that do not correspond to inputs are of size 1, so that the TPM has
2𝑚 × 2 elements where 𝑚 is the number of inputs. The last dimension corresponds to the state of the
node in the next timestep, so that node.tpm[..., 0] gives probabilities that the node will be ‘OFF’ and
node.tpm[..., 1] gives probabilities that the node will be ‘ON’.

Type np.ndarray

property tpm_off
The TPM of this node containing only the ‘OFF’ probabilities.

property tpm_on
The TPM of this node containing only the ‘ON’ probabilities.

1.46. node 117

PyPhi Documentation, Release v1.2.1

property inputs
The set of nodes with connections to this node.

property outputs
The set of nodes this node has connections to.

property label
The textual label for this node.

__eq__(other)
Return whether this node equals the other object.

Two nodes are equal if they belong to the same subsystem and have the same index (their TPMs must be
the same in that case, so this method doesn’t need to check TPM equality).

Labels are for display only, so two equal nodes may have different labels.

to_json()
Return a JSON-serializable representation.

pyphi.node.generate_nodes(tpm, cm, network_state, indices, node_labels=None)
Generate Node objects for a subsystem.

Parameters
• tpm (np.ndarray) – The system’s TPM

• cm (np.ndarray) – The corresponding CM.

• network_state (tuple) – The state of the network.

• indices (tuple[int]) – Indices to generate nodes for.

Keyword Arguments node_labels (NodeLabels) – Textual labels for each node.

Returns The nodes of the system.

Return type tuple[Node]

pyphi.node.expand_node_tpm(tpm)
Broadcast a node TPM over the full network.

This is different from broadcasting the TPM of a full system since the last dimension (containing the state of the
node) contains only the probability of this node being on, rather than the probabilities for each node.

1.47 partition

Functions for generating partitions.

pyphi.partition.partitions(collection)
Generate all set partitions of a collection.

118 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Example

>>> list(partitions(range(3)))
[[[0, 1, 2]],
[[0], [1, 2]],
[[0, 1], [2]],
[[1], [0, 2]],
[[0], [1], [2]]]

pyphi.partition.bipartition_indices(N)
Return indices for undirected bipartitions of a sequence.

Parameters N (int) – The length of the sequence.

Returns A list of tuples containing the indices for each of the two parts.

Return type list

Example

>>> N = 3
>>> bipartition_indices(N)
[((), (0, 1, 2)), ((0,), (1, 2)), ((1,), (0, 2)), ((0, 1), (2,))]

pyphi.partition.bipartition(seq)
Return a list of bipartitions for a sequence.

Parameters a (Iterable) – The sequence to partition.

Returns A list of tuples containing each of the two partitions.

Return type list[tuple[tuple]]

Example

>>> bipartition((1,2,3))
[((), (1, 2, 3)), ((1,), (2, 3)), ((2,), (1, 3)), ((1, 2), (3,))]

pyphi.partition.directed_bipartition_indices(N)
Return indices for directed bipartitions of a sequence.

Parameters N (int) – The length of the sequence.

Returns A list of tuples containing the indices for each of the two parts.

Return type list

1.47. partition 119

PyPhi Documentation, Release v1.2.1

Example

>>> N = 3
>>> directed_bipartition_indices(N)
[((), (0, 1, 2)),
((0,), (1, 2)),
((1,), (0, 2)),
((0, 1), (2,)),
((2,), (0, 1)),
((0, 2), (1,)),
((1, 2), (0,)),
((0, 1, 2), ())]

pyphi.partition.directed_bipartition(seq, nontrivial=False)
Return a list of directed bipartitions for a sequence.

Parameters seq (Iterable) – The sequence to partition.

Returns A list of tuples containing each of the two parts.

Return type list[tuple[tuple]]

Example

>>> directed_bipartition((1, 2, 3))
[((), (1, 2, 3)),
((1,), (2, 3)),
((2,), (1, 3)),
((1, 2), (3,)),
((3,), (1, 2)),
((1, 3), (2,)),
((2, 3), (1,)),
((1, 2, 3), ())]

pyphi.partition.bipartition_of_one(seq)
Generate bipartitions where one part is of length 1.

pyphi.partition.reverse_elements(seq)
Reverse the elements of a sequence.

pyphi.partition.directed_bipartition_of_one(seq)
Generate directed bipartitions where one part is of length 1.

Parameters seq (Iterable) – The sequence to partition.

Returns A list of tuples containing each of the two partitions.

Return type list[tuple[tuple]]

120 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Example

>>> partitions = directed_bipartition_of_one((1, 2, 3))
>>> list(partitions)
[((1,), (2, 3)),
((2,), (1, 3)),
((3,), (1, 2)),
((2, 3), (1,)),
((1, 3), (2,)),
((1, 2), (3,))]

pyphi.partition.directed_tripartition_indices(N)
Return indices for directed tripartitions of a sequence.

Parameters N (int) – The length of the sequence.

Returns A list of tuples containing the indices for each partition.

Return type list[tuple]

Example

>>> N = 1
>>> directed_tripartition_indices(N)
[((0,), (), ()), ((), (0,), ()), ((), (), (0,))]

pyphi.partition.directed_tripartition(seq)
Generator over all directed tripartitions of a sequence.

Parameters seq (Iterable) – a sequence.

Yields tuple[tuple] – A tripartition of seq.

Example

>>> seq = (2, 5)
>>> list(directed_tripartition(seq))
[((2, 5), (), ()),
((2,), (5,), ()),
((2,), (), (5,)),
((5,), (2,), ()),
((), (2, 5), ()),
((), (2,), (5,)),
((5,), (), (2,)),
((), (5,), (2,)),
((), (), (2, 5))]

pyphi.partition.k_partitions(collection, k)
Generate all k-partitions of a collection.

1.47. partition 121

PyPhi Documentation, Release v1.2.1

Example

>>> list(k_partitions(range(3), 2))
[[[0, 1], [2]], [[0], [1, 2]], [[0, 2], [1]]]

class pyphi.partition.PartitionRegistry
Storage for partition schemes registered with PyPhi.

Users can define custom partitions:

Examples

>>> @partition_types.register('NONE')
... def no_partitions(mechanism, purview):
... return []

And use them by setting config.PARTITION_TYPE = 'NONE'

desc = 'partitions'

pyphi.partition.mip_partitions(mechanism, purview, node_labels=None)
Return a generator over all mechanism-purview partitions, based on the current configuration.

pyphi.partition.mip_bipartitions(mechanism, purview, node_labels=None)
Return an generator of all 𝜙 bipartitions of a mechanism over a purview.

Excludes all bipartitions where one half is entirely empty, e.g:

A
×

B

is not valid, but

A
×
B

is.

Parameters
• mechanism (tuple[int]) – The mechanism to partition

• purview (tuple[int]) – The purview to partition

Yields Bipartition –

Where each bipartition is:

bipart[0].mechanism bipart[1].mechanism
×

bipart[0].purview bipart[1].purview

122 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

Example

>>> mechanism = (0,)
>>> purview = (2, 3)
>>> for partition in mip_bipartitions(mechanism, purview):
... print(partition, '\n')

0
×

2 3

0
×

3 2

0
×

2,3

pyphi.partition.wedge_partitions(mechanism, purview, node_labels=None)
Return an iterator over all wedge partitions.

These are partitions which strictly split the mechanism and allow a subset of the purview to be split into a third
partition, e.g.:

A B
× ×

B C D

See PARTITION_TYPE in config for more information.

Parameters
• mechanism (tuple[int]) – A mechanism.

• purview (tuple[int]) – A purview.

Yields Tripartition – all unique tripartitions of this mechanism and purview.

pyphi.partition.all_partitions(mechanism, purview, node_labels=None)
Return all possible partitions of a mechanism and purview.

Partitions can consist of any number of parts.

Parameters
• mechanism (tuple[int]) – A mechanism.

• purview (tuple[int]) – A purview.

Yields KPartition – A partition of this mechanism and purview into k parts.

1.47. partition 123

PyPhi Documentation, Release v1.2.1

1.48 subsystem

Represents a candidate system for 𝜙 and Φ evaluation.

class pyphi.subsystem.Subsystem(network, state, nodes=None, cut=None, mice_cache=None,
repertoire_cache=None, single_node_repertoire_cache=None,
_external_indices=None)

A set of nodes in a network.

Parameters
• network (Network) – The network the subsystem belongs to.

• state (tuple[int]) – The state of the network.

Keyword Arguments
• nodes (tuple[int] or tuple[str]) – The nodes of the network which are in this sub-

system. Nodes can be specified either as indices or as labels if the Network was passed
node_labels. If this is None then the full network will be used.

• cut (Cut) – The unidirectional Cut to apply to this subsystem.

network
The network the subsystem belongs to.

Type Network

tpm
The TPM conditioned on the state of the external nodes.

Type np.ndarray

cm
The connectivity matrix after applying the cut.

Type np.ndarray

state
The state of the network.

Type tuple[int]

node_indices
The indices of the nodes in the subsystem.

Type tuple[int]

cut
The cut that has been applied to this subsystem.

Type Cut

null_cut
The cut object representing no cut.

Type Cut

property nodes
tuple[Node]: The nodes in this Subsystem .

property proper_state
tuple[int]: The state of the subsystem.

124 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

proper_state[i] gives the state of the 𝑖th node in the subsystem. Note that this is not the state of
nodes[i].

property connectivity_matrix
np.ndarray: Alias for cm .

property size
int: The number of nodes in the subsystem.

property is_cut
bool: True if this Subsystem has a cut applied to it.

property cut_indices
tuple[int]: The nodes of this subsystem to cut for Φ computations.

This was added to support MacroSubsystem, which cuts indices other than node_indices.

Yields tuple[int]

property cut_mechanisms
list[tuple[int]]: The mechanisms that are cut in this system.

property cut_node_labels
NodeLabels: Labels for the nodes of this system that will be cut.

property tpm_size
int: The number of nodes in the TPM.

cache_info()
Report repertoire cache statistics.

clear_caches()
Clear the mice and repertoire caches.

__bool__()
Return False if the Subsystem has no nodes, True otherwise.

__eq__(other)
Return whether this Subsystem is equal to the other object.

Two Subsystems are equal if their sets of nodes, networks, and cuts are equal.

__lt__(other)
Return whether this subsystem has fewer nodes than the other.

__gt__(other)
Return whether this subsystem has more nodes than the other.

__len__()
Return the number of nodes in this Subsystem.

to_json()
Return a JSON-serializable representation.

apply_cut(cut)
Return a cut version of this Subsystem .

Parameters cut (Cut) – The cut to apply to this Subsystem .

Returns The cut subsystem.

Return type Subsystem

indices2nodes(indices)
Return Node for these indices.

1.48. subsystem 125

PyPhi Documentation, Release v1.2.1

Parameters indices (tuple[int]) – The indices in question.

Returns The Node objects corresponding to these indices.

Return type tuple[Node]

Raises ValueError – If requested indices are not in the subsystem.

cause_repertoire(mechanism, purview)
Return the cause repertoire of a mechanism over a purview.

Parameters
• mechanism (tuple[int]) – The mechanism for which to calculate the cause repertoire.

• purview (tuple[int]) – The purview over which to calculate the cause repertoire.

Returns The cause repertoire of the mechanism over the purview.

Return type np.ndarray

Note: The returned repertoire is a distribution over purview node states, not the states of the whole network.

effect_repertoire(mechanism, purview)
Return the effect repertoire of a mechanism over a purview.

Parameters
• mechanism (tuple[int]) – The mechanism for which to calculate the effect repertoire.

• purview (tuple[int]) – The purview over which to calculate the effect repertoire.

Returns The effect repertoire of the mechanism over the purview.

Return type np.ndarray

Note: The returned repertoire is a distribution over purview node states, not the states of the whole network.

repertoire(direction, mechanism, purview)
Return the cause or effect repertoire based on a direction.

Parameters
• direction (Direction) – CAUSE or EFFECT.

• mechanism (tuple[int]) – The mechanism for which to calculate the repertoire.

• purview (tuple[int]) – The purview over which to calculate the repertoire.

Returns The cause or effect repertoire of the mechanism over the purview.

Return type np.ndarray

Raises ValueError – If direction is invalid.

unconstrained_repertoire(direction, purview)
Return the unconstrained cause/effect repertoire over a purview.

unconstrained_cause_repertoire(purview)
Return the unconstrained cause repertoire for a purview.

This is just the cause repertoire in the absence of any mechanism.

126 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

unconstrained_effect_repertoire(purview)
Return the unconstrained effect repertoire for a purview.

This is just the effect repertoire in the absence of any mechanism.

partitioned_repertoire(direction, partition)
Compute the repertoire of a partitioned mechanism and purview.

expand_repertoire(direction, repertoire, new_purview=None)
Distribute an effect repertoire over a larger purview.

Parameters
• direction (Direction) – CAUSE or EFFECT.

• repertoire (np.ndarray) – The repertoire to expand.

Keyword Arguments new_purview (tuple[int]) – The new purview to expand the repertoire
over. If None (the default), the new purview is the entire network.

Returns A distribution over the new purview, where probability is spread out over the new nodes.

Return type np.ndarray

Raises ValueError – If the expanded purview doesn’t contain the original purview.

expand_cause_repertoire(repertoire, new_purview=None)
Alias for expand_repertoire() with direction set to CAUSE.

expand_effect_repertoire(repertoire, new_purview=None)
Alias for expand_repertoire() with direction set to EFFECT.

cause_info(mechanism, purview)
Return the cause information for a mechanism over a purview.

effect_info(mechanism, purview)
Return the effect information for a mechanism over a purview.

cause_effect_info(mechanism, purview)
Return the cause-effect information for a mechanism over a purview.

This is the minimum of the cause and effect information.

evaluate_partition(direction, mechanism, purview, partition, repertoire=None)
Return the 𝜙 of a mechanism over a purview for the given partition.

Parameters
• direction (Direction) – CAUSE or EFFECT.

• mechanism (tuple[int]) – The nodes in the mechanism.

• purview (tuple[int]) – The nodes in the purview.

• partition (Bipartition) – The partition to evaluate.

Keyword Arguments repertoire (np.array) – The unpartitioned repertoire. If not supplied,
it will be computed.

Returns The distance between the unpartitioned and partitioned repertoires, and the partitioned
repertoire.

Return type tuple[int, np.ndarray]

find_mip(direction, mechanism, purview)
Return the minimum information partition for a mechanism over a purview.

1.48. subsystem 127

PyPhi Documentation, Release v1.2.1

Parameters
• direction (Direction) – CAUSE or EFFECT.

• mechanism (tuple[int]) – The nodes in the mechanism.

• purview (tuple[int]) – The nodes in the purview.

Returns The irreducibility analysis for the mininum-information partition in one temporal direc-
tion.

Return type RepertoireIrreducibilityAnalysis

cause_mip(mechanism, purview)
Return the irreducibility analysis for the cause MIP.

Alias for find_mip() with direction set to CAUSE.

effect_mip(mechanism, purview)
Return the irreducibility analysis for the effect MIP.

Alias for find_mip() with direction set to EFFECT.

phi_cause_mip(mechanism, purview)
Return the 𝜙 of the cause MIP.

This is the distance between the unpartitioned cause repertoire and the MIP cause repertoire.

phi_effect_mip(mechanism, purview)
Return the 𝜙 of the effect MIP.

This is the distance between the unpartitioned effect repertoire and the MIP cause repertoire.

phi(mechanism, purview)
Return the 𝜙 of a mechanism over a purview.

potential_purviews(direction, mechanism, purviews=False)
Return all purviews that could belong to the MaximallyIrreducibleCause/MaximallyIrreducibleEffect.

Filters out trivially-reducible purviews.

Parameters
• direction (Direction) – CAUSE or EFFECT.

• mechanism (tuple[int]) – The mechanism of interest.

Keyword Arguments purviews (tuple[int]) – Optional subset of purviews of interest.

find_mice(direction, mechanism, purviews=False)
Return the MaximallyIrreducibleCause or MaximallyIrreducibleEffect for a mechanism.

Parameters
• direction (Direction) – :CAUSE or EFFECT.

• mechanism (tuple[int]) – The mechanism to be tested for irreducibility.

Keyword Arguments purviews (tuple[int]) – Optionally restrict the possible purviews to a
subset of the subsystem. This may be useful for _e.g._ finding only concepts that are “about”
a certain subset of nodes.

Returns The MaximallyIrreducibleCause or MaximallyIrreducibleEffect.

Return type MaximallyIrreducibleCauseOrEffect

128 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

mic(mechanism, purviews=False)
Return the mechanism’s maximally-irreducible cause (MaximallyIrreducibleCause).

Alias for find_mice() with direction set to CAUSE.

mie(mechanism, purviews=False)
Return the mechanism’s maximally-irreducible effect (MaximallyIrreducibleEffect).

Alias for find_mice() with direction set to EFFECT.

phi_max(mechanism)
Return the 𝜙max of a mechanism.

This is the maximum of 𝜙 taken over all possible purviews.

property null_concept
Return the null concept of this subsystem.

The null concept is a point in concept space identified with the unconstrained cause and effect repertoire of
this subsystem.

concept(mechanism, purviews=False, cause_purviews=False, effect_purviews=False)
Return the concept specified by a mechanism within this subsytem.

Parameters mechanism (tuple[int]) – The candidate set of nodes.

Keyword Arguments
• purviews (tuple[tuple[int]]) – Restrict the possible purviews to those in this list.

• cause_purviews (tuple[tuple[int]]) – Restrict the possible cause purviews to those
in this list. Takes precedence over purviews.

• effect_purviews (tuple[tuple[int]]) – Restrict the possible effect purviews to
those in this list. Takes precedence over purviews.

Returns The pair of maximally irreducible cause/effect repertoires that constitute the concept
specified by the given mechanism.

Return type Concept

1.49 timescale

Functions for converting the timescale of a TPM.

pyphi.timescale.sparse(matrix, threshold=0.1)

pyphi.timescale.sparse_time(tpm, time_scale)

pyphi.timescale.dense_time(tpm, time_scale)

pyphi.timescale.run_tpm(tpm, time_scale)
Iterate a TPM by the specified number of time steps.

Parameters
• tpm (np.ndarray) – A state-by-node tpm.

• time_scale (int) – The number of steps to run the tpm.

Returns np.ndarray

pyphi.timescale.run_cm(cm, time_scale)
Iterate a connectivity matrix the specified number of steps.

1.49. timescale 129

PyPhi Documentation, Release v1.2.1

Parameters
• cm (np.ndarray) – A connectivity matrix.

• time_scale (int) – The number of steps to run.

Returns The connectivity matrix at the new timescale.

Return type np.ndarray

1.50 tpm

Functions for manipulating transition probability matrices.

pyphi.tpm.tpm_indices(tpm)
Return the indices of nodes in the TPM.

pyphi.tpm.is_state_by_state(tpm)
Return True if tpm is in state-by-state form, otherwise False.

pyphi.tpm.condition_tpm(tpm, fixed_nodes, state)
Return a TPM conditioned on the given fixed node indices, whose states are fixed according to the given state-
tuple.

The dimensions of the new TPM that correspond to the fixed nodes are collapsed onto their state, making those
dimensions singletons suitable for broadcasting. The number of dimensions of the conditioned TPM will be the
same as the unconditioned TPM.

pyphi.tpm.expand_tpm(tpm)
Broadcast a state-by-node TPM so that singleton dimensions are expanded over the full network.

pyphi.tpm.marginalize_out(node_indices, tpm)
Marginalize out nodes from a TPM.

Parameters
• node_indices (list[int]) – The indices of nodes to be marginalized out.

• tpm (np.ndarray) – The TPM to marginalize the node out of.

Returns A TPM with the same number of dimensions, with the nodes marginalized out.

Return type np.ndarray

pyphi.tpm.infer_edge(tpm, a, b, contexts)
Infer the presence or absence of an edge from node A to node B.

Let 𝑆 be the set of all nodes in a network. Let 𝐴′ = 𝑆−{𝐴}. We call the state of 𝐴′ the context 𝐶 of 𝐴. There is
an edge from 𝐴 to 𝐵 if there exists any context 𝐶(𝐴) such that Pr(𝐵 | 𝐶(𝐴), 𝐴 = 0) ̸= Pr(𝐵 | 𝐶(𝐴), 𝐴 = 1).

Parameters
• tpm (np.ndarray) – The TPM in state-by-node, multidimensional form.

• a (int) – The index of the putative source node.

• b (int) – The index of the putative sink node.

Returns True if the edge 𝐴 → 𝐵 exists, False otherwise.

Return type bool

pyphi.tpm.infer_cm(tpm)
Infer the connectivity matrix associated with a state-by-node TPM in multidimensional form.

130 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

pyphi.tpm.reconstitute_tpm(subsystem)
Reconstitute the TPM of a subsystem using the individual node TPMs.

1.51 utils

Functions used by more than one PyPhi module or class, or that might be of external use.

pyphi.utils.state_of(nodes, network_state)
Return the state-tuple of the given nodes.

pyphi.utils.all_states(n, big_endian=False)
Return all binary states for a system.

Parameters
• n (int) – The number of elements in the system.

• big_endian (bool) – Whether to return the states in big-endian order instead of little-endian
order.

Yields tuple[int] – The next state of an n-element system, in little-endian order unless big_endian
is True.

pyphi.utils.np_immutable(a)
Make a NumPy array immutable.

pyphi.utils.np_hash(a)
Return a hash of a NumPy array.

class pyphi.utils.np_hashable(array)
A hashable wrapper around a NumPy array.

pyphi.utils.eq(x, y)
Compare two values up to PRECISION.

pyphi.utils.combs(a, r)
NumPy implementation of itertools.combinations.

Return successive r-length combinations of elements in the array a.

Parameters
• a (np.ndarray) – The array from which to get combinations.

• r (int) – The length of the combinations.

Returns An array of combinations.

Return type np.ndarray

pyphi.utils.comb_indices(n, k)
n-dimensional version of itertools.combinations.

Parameters
• a (np.ndarray) – The array from which to get combinations.

• k (int) – The desired length of the combinations.

Returns Indices that give the k-combinations of n elements.

Return type np.ndarray

1.51. utils 131

PyPhi Documentation, Release v1.2.1

Example

>>> n, k = 3, 2
>>> data = np.arange(6).reshape(2, 3)
>>> data[:, comb_indices(n, k)]
array([[[0, 1],

[0, 2],
[1, 2]],

[[3, 4],
[3, 5],
[4, 5]]])

pyphi.utils.powerset(iterable, nonempty=False, reverse=False)
Generate the power set of an iterable.

Parameters iterable (Iterable) – The iterable from which to generate the power set.

Keyword Arguments
• nonempty (boolean) – If True, don’t include the empty set.

• reverse (boolean) – If True, reverse the order of the powerset.

Returns An iterator over the power set.

Return type Iterable

Example

>>> ps = powerset(np.arange(2))
>>> list(ps)
[(), (0,), (1,), (0, 1)]
>>> ps = powerset(np.arange(2), nonempty=True)
>>> list(ps)
[(0,), (1,), (0, 1)]
>>> ps = powerset(np.arange(2), nonempty=True, reverse=True)
>>> list(ps)
[(1, 0), (1,), (0,)]

pyphi.utils.load_data(directory, num)
Load numpy data from the data directory.

The files should stored in ../data/<dir> and named 0.npy, 1.npy, ... <num - 1>.npy.

Returns A list of loaded data, such that list[i] contains the the contents of i.npy.

Return type list

132 Chapter 1. Installation

PyPhi Documentation, Release v1.2.1

1.52 validate

Methods for validating arguments.

pyphi.validate.direction(direction, allow_bi=False)
Validate that the given direction is one of the allowed constants.

If allow_bi is True then Direction.BIDIRECTIONAL is acceptable.

pyphi.validate.tpm(tpm, check_independence=True)
Validate a TPM.

The TPM can be in

• 2-dimensional state-by-state form,

• 2-dimensional state-by-node form, or

• multidimensional state-by-node form.

pyphi.validate.conditionally_independent(tpm)
Validate that the TPM is conditionally independent.

pyphi.validate.connectivity_matrix(cm)
Validate the given connectivity matrix.

pyphi.validate.node_labels(node_labels, node_indices)
Validate that there is a label for each node.

pyphi.validate.network(n)
Validate a Network .

Checks the TPM and connectivity matrix.

pyphi.validate.is_network(network)
Validate that the argument is a Network .

pyphi.validate.node_states(state)
Check that the state contains only zeros and ones.

pyphi.validate.state_length(state, size)
Check that the state is the given size.

pyphi.validate.state_reachable(subsystem)
Return whether a state can be reached according to the network’s TPM.

pyphi.validate.cut(cut, node_indices)
Check that the cut is for only the given nodes.

pyphi.validate.subsystem(s)
Validate a Subsystem .

Checks its state and cut.

pyphi.validate.time_scale(time_scale)
Validate a macro temporal time scale.

pyphi.validate.partition(partition)
Validate a partition - used by blackboxes and coarse grains.

pyphi.validate.coarse_grain(coarse_grain)
Validate a macro coarse-graining.

pyphi.validate.blackbox(blackbox)
Validate a macro blackboxing.

1.52. validate 133

PyPhi Documentation, Release v1.2.1

pyphi.validate.blackbox_and_coarse_grain(blackbox, coarse_grain)
Validate that a coarse-graining properly combines the outputs of a blackboxing.

134 Chapter 1. Installation

PYTHON MODULE INDEX

p
pyphi.actual, 49
pyphi.cache, 54
pyphi.compute, 56
pyphi.compute.distance, 57
pyphi.compute.network, 58
pyphi.compute.parallel, 60
pyphi.compute.subsystem, 62
pyphi.conf, 39
pyphi.connectivity, 73
pyphi.constants, 74
pyphi.convert, 75
pyphi.direction, 83
pyphi.distance, 83
pyphi.distribution, 86
pyphi.examples, 87
pyphi.exceptions, 95
pyphi.jsonify, 96
pyphi.macro, 98
pyphi.models, 104
pyphi.models.actual_causation, 105
pyphi.models.cuts, 108
pyphi.models.mechanism, 110
pyphi.models.subsystem, 114
pyphi.network, 115
pyphi.node, 117
pyphi.partition, 118
pyphi.subsystem, 124
pyphi.timescale, 129
pyphi.tpm, 130
pyphi.utils, 131
pyphi.validate, 133

135

PyPhi Documentation, Release v1.2.1

136 Python Module Index

INDEX

Symbols
__bool__() (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis

method), 106
__bool__() (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis

method), 108
__bool__() (pyphi.models.actual_causation.CausalLink

method), 106
__bool__() (pyphi.models.mechanism.Concept

method), 113
__bool__() (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis

method), 111
__bool__() (pyphi.models.subsystem.SystemIrreducibilityAnalysis

method), 115
__bool__() (pyphi.subsystem.Subsystem method), 125
__eq__() (pyphi.macro.MacroSubsystem method), 99
__eq__() (pyphi.network.Network method), 116
__eq__() (pyphi.node.Node method), 118
__eq__() (pyphi.subsystem.Subsystem method), 125
__getattr__() (pyphi.compute.subsystem.ConceptStyleSystem

method), 63
__getattr__() (pyphi.compute.subsystem.SystemIrreducibilityAnalysisConceptStyle

method), 63
__gt__() (pyphi.subsystem.Subsystem method), 125
__len__() (pyphi.network.Network method), 116
__len__() (pyphi.subsystem.Subsystem method), 125
__lt__() (pyphi.subsystem.Subsystem method), 125

A
Account (class in pyphi.models.actual_causation), 107
Account (in module pyphi.models), 104
account (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis

attribute), 107
account() (in module pyphi.actual), 52
account_distance() (in module pyphi.actual), 52
AcRepertoireIrreducibilityAnalysis (class in

pyphi.models.actual_causation), 105
AcRepertoireIrreducibilityAnalysis (in module

pyphi.models), 104
AcSystemIrreducibilityAnalysis (class in

pyphi.models.actual_causation), 107
AcSystemIrreducibilityAnalysis (in module

pyphi.models), 104

actual_causation() (in module pyphi.examples), 95
actual_cause (pyphi.models.actual_causation.Event

attribute), 106
actual_effect (pyphi.models.actual_causation.Event

attribute), 106
ActualCut (class in pyphi.models.cuts), 109
ActualCut (in module pyphi.models), 104
after_state (pyphi.actual.Transition attribute), 49
after_state (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis

property), 107
all_blackboxes() (in module pyphi.macro), 102
all_coarse_grains() (in module pyphi.macro), 102
all_coarse_grains_for_blackbox() (in module

pyphi.macro), 102
all_complexes (in module pyphi.compute), 56
all_complexes() (in module pyphi.compute.network),

58
all_groupings() (in module pyphi.macro), 102
all_macro_systems() (in module pyphi.macro), 103
all_partitions() (in module pyphi.macro), 101
all_partitions() (in module pyphi.partition), 123
all_states() (in module pyphi.utils), 131
alpha (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis

attribute), 105
alpha (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis

attribute), 107
alpha (pyphi.models.actual_causation.CausalLink prop-

erty), 106
apply() (pyphi.macro.SystemAttrs method), 98
apply_boundary_conditions_to_cm() (in module

pyphi.connectivity), 73
apply_cut() (pyphi.actual.Transition method), 50
apply_cut() (pyphi.compute.subsystem.ConceptStyleSystem

method), 63
apply_cut() (pyphi.macro.MacroSubsystem method),

99
apply_cut() (pyphi.subsystem.Subsystem method), 125
ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS

(pyphi.conf.PyphiConfig attribute), 43
asymmetric() (pyphi.distance.MeasureRegistry

method), 84

137

PyPhi Documentation, Release v1.2.1

B
b2l() (in module pyphi.convert), 79
b2l_sbs() (in module pyphi.convert), 80
b2s() (in module pyphi.convert), 79
basic_network() (in module pyphi.examples), 87
basic_noisy_selfloop_network() (in module

pyphi.examples), 88
basic_noisy_selfloop_subsystem() (in module

pyphi.examples), 89
basic_state() (in module pyphi.examples), 88
basic_subsystem() (in module pyphi.examples), 88
be2le() (in module pyphi.convert), 75
be2le_state_by_state() (in module pyphi.convert),

76
be_index2state() (in module pyphi.convert), 76
before_state (pyphi.actual.Transition attribute), 49
before_state (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis

property), 107
BIDIRECTIONAL (pyphi.direction.Direction attribute), 83
Bipartition (class in pyphi.models.cuts), 110
Bipartition (in module pyphi.models), 104
bipartition() (in module pyphi.partition), 119
bipartition_indices() (in module pyphi.partition),

119
bipartition_of_one() (in module pyphi.partition),

120
Blackbox (class in pyphi.macro), 101
blackbox (pyphi.macro.MacroNetwork attribute), 103
blackbox() (in module pyphi.validate), 133
blackbox_and_coarse_grain() (in module

pyphi.validate), 133
blackbox_network() (in module pyphi.examples), 92
block_cm() (in module pyphi.connectivity), 73
block_reducible() (in module pyphi.connectivity), 73

C
cache() (in module pyphi.cache), 54
cache_info() (pyphi.subsystem.Subsystem method),

125
CACHE_POTENTIAL_PURVIEWS (pyphi.conf.PyphiConfig

attribute), 44
CACHE_REPERTOIRES (pyphi.conf.PyphiConfig at-

tribute), 44
CACHE_SIAS (pyphi.conf.PyphiConfig attribute), 44
CACHING_BACKEND (pyphi.conf.PyphiConfig attribute),

44
causal_nexus() (in module pyphi.actual), 53
CausalLink (class in pyphi.models.actual_causation),

106
CausalLink (in module pyphi.models), 104
causally_significant_nodes

(pyphi.network.Network property), 116
causally_significant_nodes() (in module

pyphi.connectivity), 73

CAUSE (pyphi.direction.Direction attribute), 83
cause (pyphi.models.mechanism.Concept attribute), 112
cause_effect_info() (pyphi.subsystem.Subsystem

method), 127
cause_info() (pyphi.subsystem.Subsystem method),

127
cause_mip() (pyphi.subsystem.Subsystem method), 128
cause_purview (pyphi.models.mechanism.Concept

property), 113
cause_ratio() (pyphi.actual.Transition method), 51
cause_repertoire (pyphi.models.mechanism.Concept

property), 113
cause_repertoire() (pyphi.actual.Transition method),

50
cause_repertoire() (pyphi.subsystem.Subsystem

method), 126
cause_system (pyphi.actual.Transition attribute), 50
cause_system (pyphi.compute.subsystem.ConceptStyleSystem

property), 63
CauseEffectStructure (class in

pyphi.models.subsystem), 114
CauseEffectStructure (in module pyphi.models), 104
ces (in module pyphi.compute), 56
ces (pyphi.models.subsystem.SystemIrreducibilityAnalysis

attribute), 114
ces() (in module pyphi.compute.subsystem), 62
ces_distance (in module pyphi.compute), 56
ces_distance() (in module pyphi.compute.distance),

57
clear() (pyphi.cache.DictCache method), 54
clear() (pyphi.cache.RedisCache method), 55
clear_caches() (pyphi.subsystem.Subsystem method),

125
CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA

(pyphi.conf.PyphiConfig attribute), 44
cm (pyphi.network.Network property), 116
cm (pyphi.subsystem.Subsystem attribute), 124
coarse_grain (pyphi.macro.MacroNetwork attribute),

102
coarse_grain() (in module pyphi.validate), 133
coarse_graining() (in module pyphi.macro), 103
CoarseGrain (class in pyphi.macro), 99
comb_indices() (in module pyphi.utils), 131
combs() (in module pyphi.utils), 131
complexes (in module pyphi.compute), 56
complexes() (in module pyphi.compute.network), 59
compute() (pyphi.actual.ComputeACSystemIrreducibility

static method), 52
compute() (pyphi.compute.network.FindAllComplexes

static method), 58
compute() (pyphi.compute.parallel.MapReduce static

method), 60
compute() (pyphi.compute.subsystem.ComputeCauseEffectStructure

static method), 62

138 Index

PyPhi Documentation, Release v1.2.1

compute() (pyphi.compute.subsystem.ComputeSystemIrreducibility
static method), 63

ComputeACSystemIrreducibility (class in
pyphi.actual), 52

ComputeCauseEffectStructure (class in
pyphi.compute.subsystem), 62

ComputeSystemIrreducibility (class in
pyphi.compute.subsystem), 63

Concept (class in pyphi.models.mechanism), 112
Concept (in module pyphi.models), 104
concept() (pyphi.compute.subsystem.ConceptStyleSystem

method), 63
concept() (pyphi.subsystem.Subsystem method), 129
concept_cuts() (in module pyphi.compute.subsystem),

63
concept_distance (in module pyphi.compute), 57
concept_distance() (in module

pyphi.compute.distance), 57
ConceptStyleSystem (class in

pyphi.compute.subsystem), 63
conceptual_info (in module pyphi.compute), 57
conceptual_info() (in module

pyphi.compute.subsystem), 62
cond_depend_tpm() (in module pyphi.examples), 90
cond_independ_tpm() (in module pyphi.examples), 90
condensed (in module pyphi.compute), 57
condensed() (in module pyphi.compute.network), 59
condition_tpm() (in module pyphi.tpm), 130
conditionally_independent() (in module

pyphi.validate), 133
ConditionallyDependentError, 95
Config (class in pyphi.conf), 42
ConfigMeta (class in pyphi.conf), 42
configure_joblib() (in module pyphi.conf), 43
configure_logging() (in module pyphi.conf), 43
configure_precision() (in module pyphi.conf), 43
configure_worker_logging() (in module

pyphi.compute.parallel), 61
connectivity_matrix (pyphi.network.Network prop-

erty), 116
connectivity_matrix (pyphi.subsystem.Subsystem

property), 125
connectivity_matrix() (in module pyphi.validate),

133
Cut (class in pyphi.models.cuts), 108
Cut (in module pyphi.models), 104
cut (pyphi.actual.Transition attribute), 50
cut (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis

attribute), 107
cut (pyphi.models.subsystem.SystemIrreducibilityAnalysis

property), 115
cut (pyphi.subsystem.Subsystem attribute), 124
cut() (in module pyphi.validate), 133
cut_indices (pyphi.macro.MacroSubsystem property),

98
cut_indices (pyphi.subsystem.Subsystem property),

125
cut_matrix() (pyphi.models.cuts.Cut method), 108
cut_matrix() (pyphi.models.cuts.KCut method), 109
cut_matrix() (pyphi.models.cuts.NullCut method), 108
cut_mechanisms (pyphi.macro.MacroSubsystem prop-

erty), 98
cut_mechanisms (pyphi.subsystem.Subsystem property),

125
cut_node_labels (pyphi.macro.MacroSubsystem prop-

erty), 99
cut_node_labels (pyphi.subsystem.Subsystem prop-

erty), 125
CUT_ONE_APPROXIMATION (pyphi.conf.PyphiConfig at-

tribute), 43
cut_subsystem (pyphi.models.subsystem.SystemIrreducibilityAnalysis

attribute), 114

D
damaged_by_cut() (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect

method), 112
DATABASE (in module pyphi.constants), 74
defaults() (pyphi.conf.Config method), 42
dense_time() (in module pyphi.timescale), 129
desc (pyphi.distance.MeasureRegistry attribute), 84
desc (pyphi.partition.PartitionRegistry attribute), 122
description (pyphi.actual.ComputeACSystemIrreducibility

attribute), 52
description (pyphi.compute.network.FindAllComplexes

attribute), 58
description (pyphi.compute.parallel.MapReduce at-

tribute), 60
description (pyphi.compute.subsystem.ComputeCauseEffectStructure

attribute), 62
description (pyphi.compute.subsystem.ComputeSystemIrreducibility

attribute), 63
DictCache (class in pyphi.cache), 54
DictMICECache (class in pyphi.cache), 55
directed_account() (in module pyphi.actual), 52
directed_bipartition() (in module pyphi.partition),

120
directed_bipartition_indices() (in module

pyphi.partition), 119
directed_bipartition_of_one() (in module

pyphi.partition), 120
directed_tripartition() (in module

pyphi.partition), 121
directed_tripartition_indices() (in module

pyphi.partition), 121
DirectedAccount (class in

pyphi.models.actual_causation), 107
DirectedAccount (in module pyphi.models), 104
Direction (class in pyphi.direction), 83

Index 139

PyPhi Documentation, Release v1.2.1

direction (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis
attribute), 105

direction (pyphi.models.actual_causation.CausalLink
property), 106

direction (pyphi.models.mechanism.MaximallyIrreducibleCause
property), 112

direction (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect
property), 111

direction (pyphi.models.mechanism.MaximallyIrreducibleEffect
property), 112

direction (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis
property), 110

direction() (in module pyphi.validate), 133
directional_emd() (in module pyphi.distance), 85
directional_sia() (in module

pyphi.compute.subsystem), 63
disjunction_conjunction_network() (in module

pyphi.examples), 95
dump() (in module pyphi.jsonify), 97
dumps() (in module pyphi.jsonify), 97

E
EFFECT (pyphi.direction.Direction attribute), 83
effect (pyphi.models.mechanism.Concept attribute),

112
effect_emd() (in module pyphi.distance), 84
effect_info() (pyphi.subsystem.Subsystem method),

127
effect_mip() (pyphi.subsystem.Subsystem method),

128
effect_purview (pyphi.models.mechanism.Concept

property), 113
effect_ratio() (pyphi.actual.Transition method), 51
effect_repertoire (pyphi.models.mechanism.Concept

property), 113
effect_repertoire() (pyphi.actual.Transition

method), 50
effect_repertoire() (pyphi.subsystem.Subsystem

method), 126
effect_system (pyphi.actual.Transition attribute), 49
effect_system (pyphi.compute.subsystem.ConceptStyleSystem

property), 63
effective_info() (in module pyphi.macro), 103
emd_eq() (pyphi.models.mechanism.Concept method),

113
emergence (pyphi.macro.MacroNetwork attribute), 103
emergence (pyphi.macro.MacroNetwork property), 103
emergence() (in module pyphi.macro), 103
empty_result() (pyphi.actual.ComputeACSystemIrreducibility

method), 52
empty_result() (pyphi.compute.network.FindAllComplexes

method), 58
empty_result() (pyphi.compute.parallel.MapReduce

method), 60

empty_result() (pyphi.compute.subsystem.ComputeCauseEffectStructure
method), 62

empty_result() (pyphi.compute.subsystem.ComputeSystemIrreducibility
method), 63

encode() (pyphi.jsonify.PyPhiJSONEncoder method),
97

entropy_difference() (in module pyphi.distance), 85
EPSILON (in module pyphi.constants), 74
eq() (in module pyphi.utils), 131
eq_repertoires() (pyphi.models.mechanism.Concept

method), 113
evaluate_cut (in module pyphi.compute), 57
evaluate_cut() (in module pyphi.compute.subsystem),

62
evaluate_partition() (pyphi.subsystem.Subsystem

method), 127
Event (class in pyphi.models.actual_causation), 106
events() (in module pyphi.actual), 53
ExceptionWrapper (class in pyphi.compute.parallel),

60
expand_cause_repertoire()

(pyphi.models.mechanism.Concept method),
113

expand_cause_repertoire()
(pyphi.subsystem.Subsystem method), 127

expand_effect_repertoire()
(pyphi.models.mechanism.Concept method),
113

expand_effect_repertoire()
(pyphi.subsystem.Subsystem method), 127

expand_node_tpm() (in module pyphi.node), 118
expand_partitioned_cause_repertoire()

(pyphi.models.mechanism.Concept method),
113

expand_partitioned_effect_repertoire()
(pyphi.models.mechanism.Concept method),
113

expand_repertoire() (pyphi.subsystem.Subsystem
method), 127

expand_tpm() (in module pyphi.tpm), 130
extrinsic_events() (in module pyphi.actual), 53

F
fig10() (in module pyphi.examples), 95
fig14() (in module pyphi.examples), 95
fig16() (in module pyphi.examples), 95
fig1a() (in module pyphi.examples), 93
fig3a() (in module pyphi.examples), 93
fig3b() (in module pyphi.examples), 93
fig4() (in module pyphi.examples), 93
fig5a() (in module pyphi.examples), 93
fig5b() (in module pyphi.examples), 94
fig6() (in module pyphi.examples), 94
fig8() (in module pyphi.examples), 94

140 Index

PyPhi Documentation, Release v1.2.1

fig9() (in module pyphi.examples), 94
FILESYSTEM (in module pyphi.constants), 74
find_actual_cause() (pyphi.actual.Transition

method), 52
find_actual_effect() (pyphi.actual.Transition

method), 52
find_causal_link() (pyphi.actual.Transition method),

51
find_mice() (pyphi.actual.Transition method), 52
find_mice() (pyphi.subsystem.Subsystem method), 128
find_mip() (pyphi.actual.Transition method), 51
find_mip() (pyphi.subsystem.Subsystem method), 127
FindAllComplexes (class in pyphi.compute.network),

58
FindIrreducibleComplexes (class in

pyphi.compute.network), 59
finish_parallel() (pyphi.compute.parallel.MapReduce

method), 61
flatten() (in module pyphi.distribution), 87
from_json() (in module pyphi.network), 117
from_json() (pyphi.direction.Direction class method),

83
from_json() (pyphi.models.actual_causation.Account

class method), 107
from_json() (pyphi.models.cuts.Bipartition class

method), 110
from_json() (pyphi.models.cuts.KPartition class

method), 110
from_json() (pyphi.models.mechanism.Concept class

method), 113
from_json() (pyphi.models.subsystem.SystemIrreducibilityAnalysis

class method), 115
from_json() (pyphi.network.Network class method),

116
from_nodes (pyphi.models.cuts.Cut attribute), 108
FS_CACHE_DIRECTORY (pyphi.conf.PyphiConfig at-

tribute), 45
FS_CACHE_VERBOSITY (pyphi.conf.PyphiConfig at-

tribute), 44

G
generate_nodes() (in module pyphi.node), 118
get() (pyphi.cache.DictCache method), 54
get() (pyphi.cache.RedisCache method), 55
get() (pyphi.cache.RedisMICECache method), 55
get_inputs_from_cm() (in module pyphi.connectivity),

73
get_num_processes() (in module

pyphi.compute.parallel), 60
get_outputs_from_cm() (in module

pyphi.connectivity), 73
greater_than_zero() (in module

pyphi.models.actual_causation), 105
grouping (pyphi.macro.CoarseGrain attribute), 99

H
hamming_emd() (in module pyphi.distance), 84
hidden_from() (pyphi.macro.Blackbox method), 101
hidden_indices (pyphi.macro.Blackbox property), 101

I
in_same_box() (pyphi.macro.Blackbox method), 101
independent() (in module pyphi.distribution), 86
indices (pyphi.models.cuts.ActualCut property), 109
indices (pyphi.models.cuts.Cut property), 108
indices (pyphi.models.cuts.KCut property), 109
indices (pyphi.models.cuts.NullCut property), 108
indices2nodes() (pyphi.subsystem.Subsystem method),

125
infer_cm() (in module pyphi.tpm), 130
infer_edge() (in module pyphi.tpm), 130
info() (pyphi.cache.DictCache method), 54
info() (pyphi.cache.RedisCache method), 55
init_progress_bar()

(pyphi.compute.parallel.MapReduce method),
60

initialize_tasks() (pyphi.compute.parallel.MapReduce
method), 61

inputs (pyphi.node.Node property), 117
irreducible_causes (pyphi.models.actual_causation.Account

property), 107
irreducible_effects

(pyphi.models.actual_causation.Account
property), 107

irreducible_purviews() (in module pyphi.network),
116

is_cut (pyphi.subsystem.Subsystem property), 125
is_full() (in module pyphi.connectivity), 74
is_network() (in module pyphi.validate), 133
is_null (pyphi.models.cuts.NullCut property), 108
is_state_by_state() (in module pyphi.tpm), 130
is_strong() (in module pyphi.connectivity), 74
is_weak() (in module pyphi.connectivity), 74
iterencode() (pyphi.jsonify.PyPhiJSONEncoder

method), 97

J
joblib_memory (in module pyphi.constants), 74
jsonify() (in module pyphi.jsonify), 96
JSONVersionError, 95

K
k_partitions() (in module pyphi.partition), 121
KCut (class in pyphi.models.cuts), 109
key() (pyphi.cache.DictCache method), 54
key() (pyphi.cache.DictMICECache method), 56
key() (pyphi.cache.RedisCache method), 55
key() (pyphi.cache.RedisMICECache method), 55

Index 141

PyPhi Documentation, Release v1.2.1

kld() (in module pyphi.distance), 84
klm() (in module pyphi.distance), 85
KPartition (class in pyphi.models.cuts), 109

L
l1() (in module pyphi.distance), 84
l2b() (in module pyphi.convert), 79
l2b_sbs() (in module pyphi.convert), 81
l2s() (in module pyphi.convert), 79
label (pyphi.node.Node property), 118
labeled_mechanisms (pyphi.models.subsystem.CauseEffectStructure

property), 114
le2be() (in module pyphi.convert), 75
le2be_state_by_state() (in module pyphi.convert),

77
le_index2state() (in module pyphi.convert), 76
load() (in module pyphi.jsonify), 97
load_data() (in module pyphi.utils), 132
load_dict() (pyphi.conf.Config method), 42
load_file() (pyphi.conf.Config method), 42
loads() (in module pyphi.jsonify), 97
log() (pyphi.conf.PyphiConfig method), 48
log2() (in module pyphi.actual), 49
LOG_FILE (pyphi.conf.PyphiConfig attribute), 45
LOG_FILE_LEVEL (pyphi.conf.PyphiConfig attribute), 45
LOG_STDOUT_LEVEL (pyphi.conf.PyphiConfig attribute),

45
LogThread (class in pyphi.compute.parallel), 61

M
macro2blackbox_outputs()

(pyphi.macro.MacroSubsystem method),
99

macro2micro() (pyphi.macro.MacroSubsystem
method), 99

macro_indices (pyphi.macro.Blackbox property), 101
macro_indices (pyphi.macro.CoarseGrain property),

99
macro_network() (in module pyphi.examples), 92
macro_state() (pyphi.macro.Blackbox method), 101
macro_state() (pyphi.macro.CoarseGrain method),

100
macro_subsystem() (in module pyphi.examples), 92
macro_tpm() (pyphi.macro.CoarseGrain method), 100
macro_tpm_sbs() (pyphi.macro.CoarseGrain method),

100
MacroNetwork (class in pyphi.macro), 102
MacroSubsystem (class in pyphi.macro), 98
major_complex (in module pyphi.compute), 57
major_complex() (in module pyphi.compute.network),

59
make_mapping() (pyphi.macro.CoarseGrain method),

100
MapReduce (class in pyphi.compute.parallel), 60

marginal() (in module pyphi.distribution), 86
marginal_zero() (in module pyphi.distribution), 86
marginalize_out() (in module pyphi.tpm), 130
max_entropy_distribution() (in module

pyphi.distribution), 87
MaximallyIrreducibleCause (class in

pyphi.models.mechanism), 112
MaximallyIrreducibleCause (in module

pyphi.models), 104
MaximallyIrreducibleCauseOrEffect (class in

pyphi.models.mechanism), 111
MaximallyIrreducibleCauseOrEffect (in module

pyphi.models), 104
MaximallyIrreducibleEffect (class in

pyphi.models.mechanism), 112
MaximallyIrreducibleEffect (in module

pyphi.models), 104
MAXIMUM_CACHE_MEMORY_PERCENTAGE

(pyphi.conf.PyphiConfig attribute), 44
maybe_put_task() (pyphi.compute.parallel.MapReduce

method), 61
MEASURE (pyphi.conf.PyphiConfig attribute), 43
MeasureRegistry (class in pyphi.distance), 83
mechanism (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis

attribute), 105
mechanism (pyphi.models.actual_causation.CausalLink

property), 106
mechanism (pyphi.models.actual_causation.Event prop-

erty), 107
mechanism (pyphi.models.cuts.KPartition property), 110
mechanism (pyphi.models.cuts.Part attribute), 109
mechanism (pyphi.models.mechanism.Concept at-

tribute), 112
mechanism (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect

property), 111
mechanism (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis

property), 111
mechanism_indices() (pyphi.actual.Transition

method), 51
mechanism_state (pyphi.models.mechanism.Concept

property), 113
mechanism_state() (pyphi.actual.Transition method),

51
mechanisms (pyphi.models.subsystem.CauseEffectStructure

property), 114
memory_full() (in module pyphi.cache), 54
method() (in module pyphi.cache), 56
mic() (pyphi.subsystem.Subsystem method), 128
MICECache() (in module pyphi.cache), 56
micro_indices (pyphi.macro.Blackbox property), 101
micro_indices (pyphi.macro.CoarseGrain property),

99
micro_network (pyphi.macro.MacroNetwork attribute),

102

142 Index

PyPhi Documentation, Release v1.2.1

micro_phi (pyphi.macro.MacroNetwork attribute), 102
mie() (pyphi.subsystem.Subsystem method), 129
min_sia (pyphi.compute.subsystem.SystemIrreducibilityAnalysisConceptStyle

property), 63
mip (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect

property), 111
mip_bipartitions() (in module pyphi.partition), 122
mip_partitions() (in module pyphi.partition), 122
module

pyphi.actual, 49
pyphi.cache, 54
pyphi.compute, 56
pyphi.compute.distance, 57
pyphi.compute.network, 58
pyphi.compute.parallel, 60
pyphi.compute.subsystem, 62
pyphi.conf, 39
pyphi.connectivity, 73
pyphi.constants, 74
pyphi.convert, 75
pyphi.direction, 83
pyphi.distance, 83
pyphi.distribution, 86
pyphi.examples, 87
pyphi.exceptions, 95
pyphi.jsonify, 96
pyphi.macro, 98
pyphi.models, 104
pyphi.models.actual_causation, 105
pyphi.models.cuts, 108
pyphi.models.mechanism, 110
pyphi.models.subsystem, 114
pyphi.network, 115
pyphi.node, 117
pyphi.partition, 118
pyphi.subsystem, 124
pyphi.timescale, 129
pyphi.tpm, 130
pyphi.utils, 131
pyphi.validate, 133

MONGODB_CONFIG (pyphi.conf.PyphiConfig attribute), 45
mp2q() (in module pyphi.distance), 85

N
Network (class in pyphi.network), 115
network (pyphi.actual.Transition attribute), 49
network (pyphi.macro.MacroNetwork attribute), 102
network (pyphi.models.subsystem.SystemIrreducibilityAnalysis

property), 115
network (pyphi.subsystem.Subsystem attribute), 124
network() (in module pyphi.validate), 133
nexus() (in module pyphi.actual), 53
nice_true_ces() (in module pyphi.actual), 53
Node (class in pyphi.node), 117

node_indices (pyphi.actual.Transition attribute), 49
node_indices (pyphi.network.Network property), 116
node_indices (pyphi.subsystem.Subsystem attribute),

124
node_labels (pyphi.actual.Transition property), 50
node_labels (pyphi.macro.SystemAttrs property), 98
node_labels (pyphi.models.actual_causation.CausalLink

property), 106
node_labels (pyphi.models.cuts.Bipartition attribute),

110
node_labels (pyphi.models.cuts.Cut attribute), 108
node_labels (pyphi.models.cuts.KPartition attribute),

109
node_labels (pyphi.models.cuts.Tripartition attribute),

110
node_labels (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis

property), 111
node_labels (pyphi.network.Network property), 116
node_labels() (in module pyphi.validate), 133
node_states() (in module pyphi.validate), 133
nodes (pyphi.macro.SystemAttrs property), 98
nodes (pyphi.subsystem.Subsystem property), 124
nodes2indices() (in module pyphi.convert), 75
nodes2state() (in module pyphi.convert), 75
normalize() (in module pyphi.distribution), 86
normalize() (pyphi.models.cuts.KPartition method),

110
np_hash() (in module pyphi.utils), 131
np_hashable (class in pyphi.utils), 131
np_immutable() (in module pyphi.utils), 131
np_suppress (class in pyphi.distance), 84
null_concept (pyphi.subsystem.Subsystem property),

129
null_cut (pyphi.subsystem.Subsystem attribute), 124
NullCut (class in pyphi.models.cuts), 108
num_states (pyphi.network.Network property), 116
NUMBER_OF_CORES (pyphi.conf.PyphiConfig attribute),

44

O
OFF (in module pyphi.constants), 74
Option (class in pyphi.conf), 42
options() (pyphi.conf.Config class method), 42
order() (pyphi.direction.Direction method), 83
order_by() (pyphi.compute.subsystem.SystemIrreducibilityAnalysisConceptStyle

method), 64
order_by() (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis

method), 105
order_by() (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis

method), 107
order_by() (pyphi.models.actual_causation.CausalLink

method), 106
order_by() (pyphi.models.mechanism.Concept

method), 113

Index 143

PyPhi Documentation, Release v1.2.1

order_by() (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect
method), 112

order_by() (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis
method), 111

order_by() (pyphi.models.subsystem.CauseEffectStructure
method), 114

order_by() (pyphi.models.subsystem.SystemIrreducibilityAnalysis
method), 115

output_indices (pyphi.macro.Blackbox attribute), 101
outputs (pyphi.node.Node property), 118
outputs_of() (pyphi.macro.Blackbox method), 101
override() (pyphi.conf.Config method), 42

P
pack() (pyphi.macro.SystemAttrs static method), 98
PARALLEL_COMPLEX_EVALUATION

(pyphi.conf.PyphiConfig attribute), 44
PARALLEL_CONCEPT_EVALUATION

(pyphi.conf.PyphiConfig attribute), 43
PARALLEL_CUT_EVALUATION (pyphi.conf.PyphiConfig

attribute), 44
Part (class in pyphi.models.cuts), 109
Part (in module pyphi.models), 104
part0 (pyphi.models.cuts.Bipartition attribute), 110
part1 (pyphi.models.cuts.Bipartition attribute), 110
partition (pyphi.macro.Blackbox attribute), 101
partition (pyphi.macro.CoarseGrain attribute), 99
partition (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis

attribute), 105
partition (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis

property), 111
partition() (in module pyphi.validate), 133
PARTITION_TYPE (pyphi.conf.PyphiConfig attribute), 46
partitioned_account

(pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis
attribute), 107

partitioned_ces (pyphi.models.subsystem.SystemIrreducibilityAnalysis
attribute), 114

partitioned_probability
(pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis
attribute), 105

partitioned_probability() (pyphi.actual.Transition
method), 51

partitioned_repertoire
(pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect
property), 111

partitioned_repertoire
(pyphi.models.mechanism.RepertoireIrreducibilityAnalysis
property), 111

partitioned_repertoire() (pyphi.actual.Transition
method), 51

partitioned_repertoire()
(pyphi.subsystem.Subsystem method), 127

PartitionRegistry (class in pyphi.partition), 122

partitions() (in module pyphi.partition), 118
parts (pyphi.models.cuts.Bipartition attribute), 110
parts (pyphi.models.cuts.KPartition attribute), 109
parts (pyphi.models.cuts.Tripartition attribute), 110
phi (in module pyphi.compute), 57
phi (pyphi.macro.MacroNetwork attribute), 102
phi (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis

property), 106
phi (pyphi.models.actual_causation.CausalLink prop-

erty), 106
phi (pyphi.models.mechanism.Concept property), 113
phi (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect

property), 111
phi (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis

property), 110
phi (pyphi.models.subsystem.SystemIrreducibilityAnalysis

attribute), 114
phi() (in module pyphi.compute.subsystem), 63
phi() (pyphi.subsystem.Subsystem method), 128
phi_by_grain() (in module pyphi.macro), 103
phi_cause_mip() (pyphi.subsystem.Subsystem method),

128
phi_effect_mip() (pyphi.subsystem.Subsystem

method), 128
phi_max() (pyphi.subsystem.Subsystem method), 129
phis (pyphi.models.subsystem.CauseEffectStructure

property), 114
PICK_SMALLEST_PURVIEW (pyphi.conf.PyphiConfig at-

tribute), 47
PICKLE_PROTOCOL (in module pyphi.constants), 74
possible_complexes (in module pyphi.compute), 57
possible_complexes() (in module

pyphi.compute.network), 58
potential_purviews() (pyphi.actual.Transition

method), 51
potential_purviews()

(pyphi.macro.MacroSubsystem method),
99

potential_purviews() (pyphi.network.Network
method), 116

potential_purviews() (pyphi.subsystem.Subsystem
method), 128

powerset() (in module pyphi.utils), 132
PRECISION (pyphi.conf.PyphiConfig attribute), 46
prevention() (in module pyphi.examples), 95
print() (pyphi.models.subsystem.SystemIrreducibilityAnalysis

method), 115
PRINT_FRACTIONS (pyphi.conf.PyphiConfig attribute),

46
probability (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis

attribute), 105
probability() (pyphi.actual.Transition method), 50
process_result() (pyphi.actual.ComputeACSystemIrreducibility

method), 52

144 Index

PyPhi Documentation, Release v1.2.1

process_result() (pyphi.compute.network.FindAllComplexes
method), 58

process_result() (pyphi.compute.network.FindIrreducibleComplexes
method), 59

process_result() (pyphi.compute.parallel.MapReduce
method), 60

process_result() (pyphi.compute.subsystem.ComputeCauseEffectStructure
method), 62

process_result() (pyphi.compute.subsystem.ComputeSystemIrreducibility
method), 63

PROGRESS_BARS (pyphi.conf.PyphiConfig attribute), 45
propagation_delay_network() (in module

pyphi.examples), 91
proper_state (pyphi.subsystem.Subsystem property),

124
psq2() (in module pyphi.distance), 85
purview (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis

attribute), 105
purview (pyphi.models.actual_causation.CausalLink

property), 106
purview (pyphi.models.cuts.KPartition property), 110
purview (pyphi.models.cuts.Part attribute), 109
purview (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect

property), 111
purview (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis

property), 111
purview() (in module pyphi.distribution), 86
purview_indices() (pyphi.actual.Transition method),

51
purview_size() (in module pyphi.distribution), 86
purview_state() (pyphi.actual.Transition method), 51
PurviewCache (class in pyphi.cache), 56
pyphi.actual

module, 49
pyphi.cache
module, 54

pyphi.compute
module, 56

pyphi.compute.distance
module, 57

pyphi.compute.network
module, 58

pyphi.compute.parallel
module, 60

pyphi.compute.subsystem
module, 62

pyphi.conf
module, 39

pyphi.connectivity
module, 73

pyphi.constants
module, 74

pyphi.convert
module, 75

pyphi.direction
module, 83

pyphi.distance
module, 83

pyphi.distribution
module, 86

pyphi.examples
module, 87

pyphi.exceptions
module, 95

pyphi.jsonify
module, 96

pyphi.macro
module, 98

pyphi.models
module, 104

pyphi.models.actual_causation
module, 105

pyphi.models.cuts
module, 108

pyphi.models.mechanism
module, 110

pyphi.models.subsystem
module, 114

pyphi.network
module, 115

pyphi.node
module, 117

pyphi.partition
module, 118

pyphi.subsystem
module, 124

pyphi.timescale
module, 129

pyphi.tpm
module, 130

pyphi.utils
module, 131

pyphi.validate
module, 133

PyphiConfig (class in pyphi.conf), 43
PyPhiJSONDecoder (class in pyphi.jsonify), 97
PyPhiJSONEncoder (class in pyphi.jsonify), 96

R
rebuild_system_tpm() (in module pyphi.macro), 98
reconstitute_tpm() (in module pyphi.tpm), 130
redis_available() (in module pyphi.cache), 55
REDIS_CACHE (pyphi.conf.PyphiConfig attribute), 45
REDIS_CONFIG (pyphi.conf.PyphiConfig attribute), 45
redis_init() (in module pyphi.cache), 54
RedisCache (class in pyphi.cache), 55
RedisMICECache (class in pyphi.cache), 55

Index 145

PyPhi Documentation, Release v1.2.1

register() (pyphi.distance.MeasureRegistry method),
84

reindex() (in module pyphi.macro), 98
reindex() (pyphi.macro.Blackbox method), 101
reindex() (pyphi.macro.CoarseGrain method), 99
relevant_connections() (in module

pyphi.connectivity), 73
remove_singleton_dimensions() (in module

pyphi.macro), 98
repertoire (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect

property), 111
repertoire (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis

property), 111
repertoire() (pyphi.actual.Transition method), 50
repertoire() (pyphi.subsystem.Subsystem method),

126
repertoire_distance() (in module pyphi.distance),

85
repertoire_shape() (in module pyphi.distribution), 86
RepertoireIrreducibilityAnalysis (class in

pyphi.models.mechanism), 110
RepertoireIrreducibilityAnalysis (in module

pyphi.models), 104
REPR_VERBOSITY (pyphi.conf.PyphiConfig attribute), 46
reraise() (pyphi.compute.parallel.ExceptionWrapper

method), 60
residue_network() (in module pyphi.examples), 89
residue_subsystem() (in module pyphi.examples), 89
reverse_bits() (in module pyphi.convert), 75
reverse_elements() (in module pyphi.partition), 120
ria (pyphi.models.actual_causation.CausalLink prop-

erty), 106
ria (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect

property), 111
rule110_network() (in module pyphi.examples), 93
rule154_network() (in module pyphi.examples), 93
run() (pyphi.compute.parallel.LogThread method), 61
run() (pyphi.compute.parallel.MapReduce method), 61
run_cm() (in module pyphi.timescale), 129
run_parallel() (pyphi.compute.parallel.MapReduce

method), 61
run_sequential() (pyphi.compute.parallel.MapReduce

method), 61
run_tpm() (in module pyphi.macro), 98
run_tpm() (in module pyphi.timescale), 129

S
s2b() (in module pyphi.convert), 80
s2l() (in module pyphi.convert), 80
sbn2sbs() (in module pyphi.convert), 81
sbs2sbn() (in module pyphi.convert), 82
set() (pyphi.cache.DictCache method), 54
set() (pyphi.cache.DictMICECache method), 55
set() (pyphi.cache.PurviewCache method), 56

set() (pyphi.cache.RedisCache method), 55
set() (pyphi.cache.RedisMICECache method), 55
sia (in module pyphi.compute), 57
sia() (in module pyphi.actual), 52
sia() (in module pyphi.compute.subsystem), 63
sia_bipartitions() (in module

pyphi.compute.subsystem), 63
sia_concept_style() (in module

pyphi.compute.subsystem), 64
SINGLE_MICRO_NODES_WITH_SELFLOOPS_HAVE_PHI

(pyphi.conf.PyphiConfig attribute), 46
size (pyphi.network.Network property), 116
size (pyphi.subsystem.Subsystem property), 125
size() (pyphi.cache.DictCache method), 54
size() (pyphi.cache.RedisCache static method), 55
small_phi_ces_distance() (in module

pyphi.compute.distance), 57
small_phi_time (pyphi.models.subsystem.SystemIrreducibilityAnalysis

property), 115
snapshot() (pyphi.conf.Config method), 42
sparse() (in module pyphi.timescale), 129
sparse_time() (in module pyphi.timescale), 129
start_parallel() (pyphi.compute.parallel.MapReduce

method), 61
state (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis

attribute), 105
state (pyphi.subsystem.Subsystem attribute), 124
state2be_index() (in module pyphi.convert), 75
state2le_index() (in module pyphi.convert), 75
state_by_node2state_by_state() (in module

pyphi.convert), 78
state_by_state2state_by_node() (in module

pyphi.convert), 77
state_length() (in module pyphi.validate), 133
state_of() (in module pyphi.utils), 131
state_probability() (pyphi.actual.Transition

method), 50
state_reachable() (in module pyphi.validate), 133
StateUnreachableError, 95
Subsystem (class in pyphi.subsystem), 124
subsystem (pyphi.compute.subsystem.ComputeCauseEffectStructure

property), 62
subsystem (pyphi.models.mechanism.Concept at-

tribute), 112
subsystem (pyphi.models.subsystem.SystemIrreducibilityAnalysis

attribute), 114
subsystem() (in module pyphi.validate), 133
subsystems (in module pyphi.compute), 57
subsystems() (in module pyphi.compute.network), 58
system (pyphi.actual.Transition attribute), 50
SYSTEM_CUTS (pyphi.conf.PyphiConfig attribute), 48
system_repertoire_distance() (in module

pyphi.distance), 86
SystemAttrs (class in pyphi.macro), 98

146 Index

PyPhi Documentation, Release v1.2.1

SystemIrreducibilityAnalysis (class in
pyphi.models.subsystem), 114

SystemIrreducibilityAnalysis (in module
pyphi.models), 104

SystemIrreducibilityAnalysisConceptStyle
(class in pyphi.compute.subsystem), 63

T
time (pyphi.models.mechanism.Concept attribute), 112
time (pyphi.models.subsystem.SystemIrreducibilityAnalysis

attribute), 114
time_scale (pyphi.macro.MacroNetwork attribute), 102
time_scale() (in module pyphi.validate), 133
to_2d() (in module pyphi.convert), 81
to_2dimensional() (in module pyphi.convert), 77
to_json() (pyphi.actual.Transition method), 50
to_json() (pyphi.direction.Direction method), 83
to_json() (pyphi.models.actual_causation.Account

method), 107
to_json() (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis

method), 106
to_json() (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis

method), 108
to_json() (pyphi.models.actual_causation.CausalLink

method), 106
to_json() (pyphi.models.cuts.Bipartition method), 110
to_json() (pyphi.models.cuts.Cut method), 109
to_json() (pyphi.models.cuts.KCut method), 109
to_json() (pyphi.models.cuts.KPartition method), 110
to_json() (pyphi.models.cuts.NullCut method), 108
to_json() (pyphi.models.cuts.Part method), 109
to_json() (pyphi.models.mechanism.Concept method),

113
to_json() (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect

method), 112
to_json() (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis

method), 111
to_json() (pyphi.models.subsystem.CauseEffectStructure

method), 114
to_json() (pyphi.models.subsystem.SystemIrreducibilityAnalysis

method), 115
to_json() (pyphi.network.Network method), 116
to_json() (pyphi.node.Node method), 118
to_json() (pyphi.subsystem.Subsystem method), 125
to_md() (in module pyphi.convert), 81
to_multidimensional() (in module pyphi.convert), 77
to_nodes (pyphi.models.cuts.Cut attribute), 108
tpm (pyphi.network.Network property), 116
tpm (pyphi.node.Node attribute), 117
tpm (pyphi.subsystem.Subsystem attribute), 124
tpm() (in module pyphi.validate), 133
tpm_indices() (in module pyphi.tpm), 130
tpm_off (pyphi.node.Node property), 117
tpm_on (pyphi.node.Node property), 117

tpm_size (pyphi.subsystem.Subsystem property), 125
Transition (class in pyphi.actual), 49
transition (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis

attribute), 107
transitions() (in module pyphi.actual), 53
Tripartition (class in pyphi.models.cuts), 110
true_ces() (in module pyphi.actual), 53
true_events() (in module pyphi.actual), 53

U
unconstrained_cause_repertoire()

(pyphi.actual.Transition method), 50
unconstrained_cause_repertoire()

(pyphi.subsystem.Subsystem method), 126
unconstrained_effect_repertoire()

(pyphi.actual.Transition method), 50
unconstrained_effect_repertoire()

(pyphi.subsystem.Subsystem method), 126
unconstrained_probability()

(pyphi.actual.Transition method), 51
unconstrained_repertoire()

(pyphi.subsystem.Subsystem method), 126
uniform_distribution() (in module

pyphi.distribution), 86
unorderable_unless_eq

(pyphi.compute.subsystem.SystemIrreducibilityAnalysisConceptStyle
attribute), 64

unorderable_unless_eq
(pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis
attribute), 105

unorderable_unless_eq
(pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis
attribute), 107

unorderable_unless_eq
(pyphi.models.actual_causation.CausalLink
attribute), 106

unorderable_unless_eq
(pyphi.models.mechanism.Concept attribute),
113

unorderable_unless_eq
(pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect
attribute), 112

unorderable_unless_eq
(pyphi.models.mechanism.RepertoireIrreducibilityAnalysis
attribute), 111

unorderable_unless_eq
(pyphi.models.subsystem.SystemIrreducibilityAnalysis
attribute), 115

USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE
(pyphi.conf.PyphiConfig attribute), 48

V
VALIDATE_CONDITIONAL_INDEPENDENCE

(pyphi.conf.PyphiConfig attribute), 46

Index 147

PyPhi Documentation, Release v1.2.1

validate_parent_cache() (in module pyphi.cache),
55

VALIDATE_SUBSYSTEM_STATES
(pyphi.conf.PyphiConfig attribute), 46

W
wedge_partitions() (in module pyphi.partition), 123
WELCOME_OFF (pyphi.conf.PyphiConfig attribute), 45
worker() (pyphi.compute.parallel.MapReduce static

method), 60
WrongDirectionError, 96

X
xor_network() (in module pyphi.examples), 89
xor_subsystem() (in module pyphi.examples), 90

148 Index

	Installation
	Installation
	Getting started
	Basic Usage
	IIT 3.0 Paper (2014)
	Figure 1
	Figure 3
	(A)
	(B)
	(C)

	Figure 4
	Figure 5
	(A)
	(B)

	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16

	Conditional Independence
	XOR Network
	Emergence (coarse-graining and blackboxing)
	Coarse-graining
	Blackboxing

	Actual Causation
	Configuration
	Computation
	Accounts
	Irreducible Accounts
	Disjunction of conjunctions

	Residue
	Magic Cuts
	Detailed installation guide for macOS
	Transition probability matrix conventions
	State-by-node form
	Multidimensional state-by-node form
	State-by-state form
	Little-endian convention

	Connectivity matrix conventions
	Loading a configuration
	Approximations and theoretical options
	Parallelization and system resources
	Memoization and caching
	Logging
	Numerical precision
	The config API
	Caching
	Caching with MongoDb
	Caching with Redis

	actual
	cache
	compute
	compute.distance
	compute.network
	compute.parallel
	compute.subsystem
	conf
	Loading a configuration
	Approximations and theoretical options
	Parallelization and system resources
	Memoization and caching
	Logging
	Numerical precision
	The config API

	connectivity
	constants
	convert
	direction
	distance
	distribution
	examples
	exceptions
	jsonify
	macro
	models
	models.actual_causation
	models.cuts
	models.mechanism
	models.subsystem
	network
	node
	partition
	subsystem
	timescale
	tpm
	utils
	validate

	Python Module Index
	Index

